
Research Paper
Progress in Informatics, No.10 (2013.3)

GRoundTram: An Integrated Framework for Developing Well-Behaved Bidi-
rectional Model Transformations*2

Soichiro Hidaka
National Institute of Informatics

hidaka@nii.ac.jp

Zhenjiang Hu
National Institute of Informatics

hu@nii.ac.jp

Kazuhiro Inaba
National Institute of Informatics*1

kinaba@nii.ac.jp

Hiroyuki Kato
National Institute of Informatics

kato@nii.ac.jp

Keisuke Nakano
University of Electro-Communications

ksk@cs.uec.ac.jp

ABSTRACT

Bidirectional model transformation is useful for maintaining consistency between two models, and has many potential
applications in software development including model synchronization, round-trip engineering, and software evolution.
Despite these attractive uses, the lack of a practical tool supporting for systematic development prevents it from being
widely used. In this paper, we solve this problem by proposing an integrated framework called GRoundTram (Graph
Roundtrip Transformation for Models), which is carefully designed and implemented for compositional development of
well-behaved and efficient bidirectional model transformations. GRoundTram is built upon a well-founded bidirectional
framework and is equipped with a user-friendly language for coding bidirectional model transformations, a novel tool
for validating both models and transformations, an optimization mechanism for improving efficiency, and a powerful
debugging environment for testing bidirectional behavior. GRoundTram has been used by other reseach groups besides
ourselves and their results show its usefulness in practice.

KEYWORDS

Model-driven Development, Bidirectional Transformation, Model Transformation, Graph Transformation

1 Introduction

Bidirectional model transformation [Antkiewicz
and Czarnecki, 2007, Czarnecki et al., 2009, Ehrig
et al., 2007, Stevens, 2008, 2010] is an enhancement
of model transformation with bidirectional capability,
and is an important requirement in Object Management
Group (OMG)’s Queries/Views/Transformations (QVT)
standard for defining model transformation languages.
It describes not only a forward transformation from a
source model to a target model, but also a backward
transformation showing how to reflect the changes in
the target model in the source model so that consistency
between them is maintained. Bidirectional model trans-

*2This paper is an extended version of the conference short paper [Hi-
daka et al., 2011c] presented in ASE’11.

*1Current affiliation is Google

formation has many potential applications in software
development, including model synchronization [An-
tkiewicz and Czarnecki, 2007, Giese and Wagner, 2006,
Xiong et al., 2007], round-trip engineering [Antkiewicz
and Czarnecki, 2006], software evolution [Lämmel,
2004], and multiple-view software development [Garcia,
2008, Grundy et al., 1998].

Unlike (unidirectional) model transformation where
lots of tools have been developed for supporting design,
validation, and test of model transformation, bidirec-
tional model transformation lacks such useful tools, and
that prevents it from being widely used. In fact, we
have new requirements and challenges in the context of
bidirectional model transformation.

Most importantly, we should be sure that a bidirec-
tional model transformation behaves exactly as we want.
Such a transformation has more complicated behavior

GRoundTram: ラウンドトリップ性 (well-behavedness) を満たす双方向モデル変換開発のための統合フレームワーク

than a unidirectional one. It should be well-behaved
in the sense that both the forward and backward trans-
formations are consistent with each other and have the
roundtrip property [Czarnecki et al., 2009]. As argued in
[Stevens, 2007] though, there are semantic issues with
many of the existing tools.

Next, bidirectional model transformations should be
compositional so that they can reuse existing transforma-
tions and bigger ones can be constructed from smaller
ones. As indicated in the conclusion of [Ehrig et al.,
2005], most model transformation languages based on
graph transformations are rule-based, describing direct
relationships between the source and target models.
They are not compositional in the sense that we cannot
introduce intermediate models for gluing together model
transformations. Therefore, rule-based techniques
cannot easily support systematic development of model
transformations in the large [Klar et al., 2007]. However,
composition comes at the cost of efficiency; many
unnecessary intermediate models might be produced.
Therefore, an optimization method is required to auto-
matically eliminate unnecessary intermediate models
during execution.

Furthermore, a bidirectional model transformation
should be general enough because it is to be used at
various stages of the software development life cycle.
It should be able to be applied to different models such
as UML diagrams, sequence diagrams, Petri-nets, and
even lower level control/data flow graphs. While visual
frameworks are useful in high-level design, general
text-based languages play an important role in develop-
ing large-scale transformations, say, to deal with lower
level mappings or complex code refactoring. Moreover,
we would expect to have a set of language-based tools
for type checking (validating) both models and bidirec-
tional model transformations to remove errors before
execution, an efficient execution model, and a tool for
testing/debugging bidirectional behavior. Apart from a
recent attempt in [Wider, 2011] that embed lens [Foster
et al., 2007] as a DSL in Scala, which benefits from the
type system in the host language, as far as we are aware,
no such language-based modeling environments have
been proposed for bidirectional model transformation.

In this paper, we remedy this situation by proposing
a language-based modeling framework called GRound-
Tram (Graph Roundtrip Transformation for Models),
which is carefully designed and implemented for com-
positional development of well-behaved and efficient
bidirectional model transformation at the various stages
of software development. Our work is inspired by
recent research on bidirectional languages (with well-
behavedness) and automatic bidirectionalization in the
programming language community [Bohannon et al.,
2008, Foster et al., 2007, Hu et al., 2008, Matsuda et al.,
2007]. In particular, it has been recently shown [Hi-
daka et al., 2010] that a graph query algebra UnCAL
(Unstructured CALculus) [Buneman et al., 2000], which
consists of carefully designed graph constructors, con-
ditional and structural recursion operators, can be fully
bidirectionalized. Each graph transformation in UnCAL

has clear bidirectional semantics and is guaranteed to be
well-behaved.

This paper is about a successful application of a bidi-
rectional graph query algebra in the programming com-
munity to the construction of a framework for developing
bidirectional model transformations in the software engi-
neering community. Our main technical contributions are
summarized as follows.

Well-Behavedness. We propose a novel bidirectional
graph contraction algorithm so that we can build
well-behaved bidirectional model transformations upon
the well-founded bidirectional UnCAL algebra. In fact,
there is a gap between UnCAL graphs and the models
used in model transformation: graphs in UnCAL are
edge-labeled and their equivalence is defined by bisimi-
larity, while models in model transformation may have
labels on both edges and nodes and their equivalence is
defined by unique identifiers. We close this gap so that
every UnCAL graph has a bidirectional correspondence
with a model.

Compositional. We design a user-friendly language
UnQL+, which is the first purely functional language for
developing large bidirectional model transformations in a
compositional way. UnQL+ is an extension of the graph
query language UnQL [Buneman et al., 2000] with new
additional language constructs for graph transformation.
We show that any UnQL+ program can be correctly
translated into an UnCAL construct and inefficiency
due to intermediate models in the composition can be
automatically eliminated.

Language-based IDE. We implement an integrated de-
velopment environment GRoundTram, which has a novel
tool for validating both models and bidirectional model
transformations, an automatic optimization mechanism
for improving efficiency, and a powerful debugging en-
vironment for testing bidirectional behavior. The sys-
tem (including sources, documents, and many application
examples) is available online [BiG], and being used by
research groups besides ourselves for developing some
nontrivial applications. Their successes indicate the use-
fulness of GRoundTram in practice.

This paper is an enhancement of the emerging idea of
our previous work that was presented in a short paper [Hi-
daka et al., 2009b]. Moreover, in relation to the bidirec-
tionalization presented in [Hidaka et al., 2010], a bidirec-
tional contraction stage has been added after stage 2 (ep-
silon edge and unreachable part elimination stage) of the
previous work. With respect to the surface syntax exten-
sion presented in [Hidaka et al., 2009a], the present paper
can deal with regular path expressions and treat multiple
graph databases. We have also added a proof of correct-
ness of a translation to an internal graph algebra and have
integrated the verification framework presented in [Inaba
et al., 2011] into ours.

The rest of the paper is organized as follows. We begin
by demonstrating how the GRoundTram system works
in Section 2. We then briefly review the UnCAL bidi-

Progress in Informatics No.10 (2013.3)

Bidirectional
Transformation

Source Model

(DOT/UnCAL)

Source Schema

(KM3)

Model Validation

Forward

Transformation

Transformation

(UnQL+)

Target Schema

(KM3)

Model Transformation

Validation

Verified Transformation

Target Model

(DOT)

Graph Update

Updated Target Model

(DOT)
Backward

Transformation

Updated Source Model

(DOT)

Graph Update

Source Model

(DOT)

Fig. 1 Overview of GRoundTram

Fig. 2 Snapshot of GRoundTram

rectional framework on which GRoundTram is based in
Section 3. After explaining the design architecture of the
GRoundTram system, we show in detail the definition
of UnQL+, the bidirectional graph contraction algorithm,
and the translation from UnQL+ to UnCAL in Section 4.
We evaluate the system in Section 5, discuss the related
work in Section 6, and conclude the paper in Section 7.

2 Overview of GRoundTram

Before proceeding with the technical details, let us
overview the GRoundTram system to give the reader an
idea of what it can do. Figure 1 shows the basic functions
the GRoundTram system provides.
2.1 Input

The input to the system is a source model together with
its schema, a transformation described in UnQL+, and a
target model schema. The target model is produced by
the forward transformation.

Model. Models are represented by general edge-labeled
graphs, which form a general representation of various
models. As a running example, consider the class model
diagram in Figure 3, which is taken from [Ehrig et al.,
2005]. It consists of three classes and two directed as-
sociations, and each class has a primary attribute∗. This

∗For this particular example, the diagram could be further simplified
by using simple labeled references instead of model elements for phone
number, for example, and nothing prevents us from doing so. How-
ever, we believe this example helps us demonstrate the expressiveness
of transformations in GRoundTram.

Association

name = "address"

Class

name = "Person"
 is_persistent = true

src_of src

Class

name = "Address"
 is_persistent = false

 dest

Association

name = "phone"

src_of src

Class

name = "Phone"
 is_persistent = true

 dest

Attribute

name = "name"
 is_primary = true

 attrs

Attribute

name = "addr"
 is_primary = true

 attrs

Attribute

name = "number"
 is_primary = true

 attrs

PrimitiveDataType

name = "String"

 type type

PrimitiveDataType

name = "Integer"

 type

Fig. 3 A Class Diagram

57 54

56

String
65

53

Class
51

src_of
50

46

Class
47

49

String Class

68 42

67

String
33

41

Boolean
27

Attribute
64

63

String

30 8

29

String
7

Boolean

6

true

name is_primary

28

"name"

40

true

45

name src

name
48

"phone"

52

name src Association dest

nameis_persistent attrs
55

"address"

62

"Address"
66

"Person"

69

AssociationAssociation

Fig. 4 A Class Model Represented by an Edge-
Labeled Graph

model can be represented by the graph in Figure 4, where
the information has been moved to the edges. The graph
is in the standard DOT format which can be visualized
and edited by the popular Graphviz tool [Ellson et al.,
2003].

Model Schema (Metamodel). Each model has a struc-
ture. For instance, a class diagram has the following
structure. A class diagram consists of classes and di-
rected associations between classes. A class is indicated
as persistent or non-persistent. It consists of one or more
attributes, at least one of which must be marked as consti-
tuting the classes’ primary key. An attribute type is of a
primitive data type (e.g. String, Integer). An association
associates classes and is represented here using a model
element. KM3 [Jouault and Bézivin, 2006] is used to de-
scribe such a model structure [Hidaka et al., 2009a], and
its definition can be found in [BiG]. We currently do not
support complex OCL constraints in the schema.

Model Transformation. (Forward) Model transforma-
tion is described compositionally in UnQL+ (Section
4.1), a SQL-like graph query/transformation language.
As an example, consider extracting all persistent classes
from the class model $db, and transforming them into

GRoundTram: ラウンドトリップ性 (well-behavedness) を満たす双方向モデル変換開発のための統合フレームワーク

tables by replacing Attributes with Columns . This
can be described compositionally as follows, using the
intermediate model $persistentClass .

select {tables : $table} where
$persistentClass in

(* select classes *)
(select $class where
{Association.(src|dest).Class : $class} in $db,
{is persistent : {Boolean : true}} in $class),

$table in
(* replace Attribute *)
(replace attrs → $g

by (select {Column : $a} where
{attrs.Attribute : $a} in $persistentClass)

in $persistentClass)

2.2 Validation
In order to detect errors during development as early

as possible and help users to develop correct models and
transformations, GRoundTram provides two validation
mechanisms.

Model Validation. The system can verify the con-
formance of the source and the target model to their
associated schemata. In particular, after editing the
models, it is important to check that they are in valid
states.

Model Transformation Validation. Correct model
transformations should always generate a target model
conforming to the target schema from any source model
satisfying the source schema.

While the model validation is standard, a general
model transformation validation is more challenging but
more useful for ensuring correct model transformations.
As an instance of simple erroneous transformation,
suppose the user made an error writing select $a instead
of select {Column : $a} in the previous example.
Its outputs do not conform to the schema and hence an
error is reported by the system. The check is automatic
and static. Users neither have to provide any test cases
by hand, nor execute the transformation for testing; the
system automatically finds and displays an example of
a source model that reveals the problem (in this case, a
class model containing at least one persistent class).
2.3 Bidirectional Transformation

The GRoundTram system is unique in its execution of
well-behaved bidirectional transformations, as seen in the
lower part of Figure 1.

Forward Transformation. After the user specified the
source model and the UnQL+ model transformation, the
target model is computed by running the transformation
with the source model set to the variable $db. Like the
source model, the target model can also be exported and
be edited in the standard DOT format.

Backward Transformation. The most distinct feature
of GRoundTram is the automatic derivation of backward
transformations that appropriately propagate modifica-
tions on the target models to the source models. There
is no need to maintain two separate transformations

1

2

a

3

 b

4

c

5

a

a

c

6

d

(a) A Simple Graph

0

1

2

a

3

 b

4

 c

51

a

61

52

a

62

41

c

42

c

d

d

c

(b) An Equivalent Graph

Fig. 5 Graph Equivalence Based on Bisimulation

or to worry about their consistency. Users just write a
forward transformation from one model to another in
a compositional way, and a corresponding backward
transformation is automatically derived.
2.4 Graphical User Interface

The GRoundTram system combines all its functions as
an integrated framework with a user-friendly GUI (Fig-
ure 2). The user loads a source graph (displayed in the
left pane) and a bidirectional transformation written in
UnQL+. Once they are loaded, the forward transforma-
tion can be conducted by pushing the “forward” button
(right arrow icon). The target graph appears on the right
pane. The user can graphically edit the target graph and
apply a backward transformation by pushing the “back-
ward” button (left arrow icon). The source graph can be
edited as well, of course. The user can optionally spec-
ify the source schema and the target schema and can run
the validation by pushing the check button on both panes.
The transformation itself can also be checked.

For ease of debugging/understanding the behavior of
the bidirectional computation between two models, trace
information is instantly displayed between the source and
target (red part in Figure 2). If subgraphs on either pane
are selected, corresponding subgraphs on the other pane
are also highlighted. This helps users to understand how
a modification on the target affects that on the source, and
vice versa.

3 Background: Bidirectional UnCAL

The GRoundTram system is built upon our recent
work [Hidaka et al., 2010] on bidirectionalization of
UnCAL, a graph algebra known in the database commu-
nity for graph querying [Buneman et al., 2000]. It has
been shown that any unidirectional graph transformation
written in UnCAL can be fully bidirectionalized with
a backward transformation such that both forward and
backward transformations are consistent and well-
behaved. We briefly explain the basic results that will be
used in this paper.
3.1 Graph Data Model

Graphs in UnCAL are rooted and directed cyclic
graphs with no order between outgoing edges. They are
edge-labeled in the sense that all information is stored
as labels on edges and labels on nodes serve as unique
identifiers and have no particular meaning. Figure 5(a)

Progress in Informatics No.10 (2013.3)

gives a small example of a directed cyclic graph with six
nodes and seven edges. In text, it is represented by

g = {a : {a : g1}, b : {a : g1}, c : g2}
g1 = {d : {}}
g2 = {c : g2}

where the notation {l1 : g1, . . . , ln : gn} denotes a set
representing a graph which contains n edges with labels
l1, . . . , ln, each edge pointing to a graph gi, and the
empty set {} denotes a graph with a single node. Two
graphs g1 and g2 can be merged using the set union
operation g1 ∪ g2. In addition, the ε-edge is allowed to
represent a shortcut between two nodes, and works like
the ε-transition used in automata.

Two graphs in UnCAL are considered to be equal if
they are bisimilar. An intuitive understanding of bisimi-
larity is that unfolding of cycles and duplication of equiv-
alent subgraphs do not affect the equivalence of graphs,
and unreachable parts from the root are ignored. For in-
stance, the graph in Figure 5(b) is equivalent to the graph
in Figure 5(a); the new graph has an additional ε-edge
(denoted by the dotted line), duplicates the graph rooted
at node 5, and unfolds and splits the cycle at node 4.

It is worth noting that bisimilarity plays an important
role in bidirectionalization [Hidaka et al., 2010], query
optimization [Buneman et al., 2000], and verification
of graph transformations [Inaba et al., 2011]. However,
bisimilarity is different from the usual equivalence of
models whose elements have unique identifiers. We will
show how to bridge this gap in Section 4.2.
3.2 UnCAL

The most important feature of UnCAL is that
any graph transformation in UnCAL is described by
structural recursions or their composition.

A structural recursive function f in UnCAL is a recur-
sive computation scheme on graphs defined by

f ({}) = {}
f ({l : g}) = (l, g) � f(g)
f (g1 ∪ g2) = f(g1) ∪ f(g2)

where � is a given binary operator. Different choices of
� define different recursive functions. For simplicity, the
definition above is abbreviated to

sfun f ({l : g}) = (l, g) � f(g).

Note that even for a graph g having cycles, the computa-
tion of f(g) always terminates under the usual recursive
semantics, where all recursive calls are memoized and
their results are reused to avoid entering infinite loops.

As a simple example, we may use the following recur-
sive function a2d xc to replace all edges labeled a by d
and skip all edges labeled c for the graph in Figure 5(a).

sfun a2d xc ({l : g}) = if l = a then {d : a2d xc(g)}
else if l = c then a2d xc(g)
else {l : a2d xc(g)}

We can naturally extend the structural recursion above
so that it allows mutual recursion. Any number of mutu-
ally recursive functions can be merged into one by using
the standard tupling method [Hu et al., 1997].

3.3 Bidirectional Semantics of UnCAL
A query in UnCAL is usually run in the forward direc-

tion: under an environment (a mapping from variables to
graphs) ρ, a query Q generates a result graph denoted by
F [[Q]]ρ.

Let g = F [[Q]]ρ be a result graph. Assume that a user
has edited it into g′. For example, one may add a new
subgraph, modify some labels, or delete several edges. In
our previous study [Hidaka et al., 2010], we gave back-
ward semantics that properly reflect back the editing to
the original inputs. Formally speaking, given the modi-
fied result graph g′ and the original input environment ρ,
we presented a method that computes the modified envi-
ronment ρ′ = B[[Q]](ρ, g′).

By “properly reflecting back” (or well-behaved), we
mean the following two properties hold:

F [[Q]]ρ = g

B[[Q]](ρ, g) = ρ
(GETPUT)

B[[Q]](ρ, g′) = ρ′

B[[Q]](ρ,F [[Q]]ρ′) = ρ′
(WPUTGET)

The (GETPUT) property says that if no change is made
to the output g, there should be no change in the input en-
vironment. The (WPUTGET) property is an unrestricted
version of the (PUTGET) property that appeared in [Fos-
ter et al., 2005], which requires g′ ∈ Range(F [[Q]]) and
B[[Q]](ρ, g′) = ρ′ to imply F [[Q]]ρ′ = g′. The (PUT-
GET) property states that if a result graph is modified to
g′, which is in the range of the forward evaluation, this
modification can be reflected in the source such that a
forward evaluation will produce the same result g′. In
contrast, the (WPUTGET) property allows the modified
result to be different (this difference is sometimes called
the view side-effect) from the result obtained by a back-
ward evaluation followed by a forward evaluation, but re-
quires both results to have the same effect on the original
source if the backward evaluation is applied again.

Although the (WPUTGET) property is weaker than
the (PUTGET) property that forbids view side-effect, this
property enables us to make flexible modifications on the
result graphs. For example, if the transformation includes
a duplication, the target will include two copies of the
same data. If a user, being unaware of the duplicates,
edits only one of them, then this modification would be
forbidden in the (PUTGET) setting, because updating
only one of the copy will make the updated target out of
the range of the transformation. Instead, we reflect the
updates and the user has a chance to do another forward
transformation to see the update reflected in another copy
in the view.

Even with the flexibility of (WPUTGET) explained
above, we reject updating of values that come from
transformation, like label d in a2d xc described earlier.
Because whatever reflection was made, another forward
transformation will always produce d again, so the user’s
modification in the target would not have been preserved.

Note that these properties are true under bisimulation
equivalence. We additionally need encoding in order
to represent models whose equivalence is based on

GRoundTram: ラウンドトリップ性 (well-behavedness) を満たす双方向モデル変換開発のための統合フレームワーク

Model Transformation in UnQL+

(Compositional and Functional)

Model Transformation in UnQL+

(Compositional and Functional)

UnCAL Graph Algebra

(Structural Recursion)

UnCAL Graph Algebra

(Structural Recursion)

UnQL+ to UnCAL
Translation

UnQL+ to UnCAL
Translation

Source/Target ModelsSource/Target Models

Bidirectional

Interpreter

Bidirectional

Interpreter
OptimizerOptimizer

Transformation

Verifier

Transformation

Verifier

Graph

Verifier

Graph

Verifier

Update

Checker

Update

Checker

Backend Engine for Bidirectional UnCAL

UnCAL GraphsUnCAL Graphs

Bidirectional Graph
Contraction

Bidirectional Graph
Contraction

Frontend of Bidirectional UnCAL

Fig. 6 GRoundTram Implementation on Bidirec-
tional UnCAL Engine

isomorphism. In our earlier study in [Sasano et al.,
2011], we fill this gap by encoding identifiers of the
model elements with dedicated edges. In this way, no
distinct value-equivalent subgraph encoding different
model elements will be contracted.

We use three different editing reflection mech-
anisms [Hidaka et al., 2010] for different editing
operations: edge renaming, edge deletion, and sub-
graph insertion. Trace information is used to reflect
edge deletion and determine the insertion point in the
source. Insertion is handled by using a general inversion
technique [Abramov and Glück, 2002] to enumerate the
pairs of the updated target and the corresponding source.
Unspecified edge label (corresponding to default values)
in the source should be filled in by users.

Although we have an SQL-like select/replace/delete-
where surface syntax (described in section 4.1), bidi-
rectional interpretation of the transformation takes place
at the UnCAL level. Therefore, although we can encode
join operations by using consecutive where clauses, this
join operation is not our unit of bidirectionalization (this
join operation is translated to nested structural recursions
which are units of bidirectionalization), so we can not
exploit these high level semantics to reflect changes like
relational lenses [Bohannon et al., 2006]. Diskin et al.
[2011] pointed out a similar composability issue in the
state-based setting under the context of keys. We do not
use the concept of a key, so we do not have this problem.
We do not have a control over update policy using the
notion of key.

Hermann et al. [2011] discuss the correctness of the
synchronization algorithm for TGGs. Compared with
this related work, our well-behavedness (correctness)
reasoning is only at the graph level of representation. We
could have better notion of correctness for users at model
level as in [Hermann et al., 2011]. These related works
are important towards our reasoning about correctness in
the model level.

4 Design and Implementation of GRoundTram

Figure 6 depicts the architecture of GRoundTram.
We provide a new user-friendly model transformation
language UnQL+ that is functional (rather than rule-

based as in many existing tools) and compositional
with high modularity for reuse and maintenance, and
the architecture handles models that are described by
edge-labeled graphs that are general enough to express
various models. GRoundTram system runs on the
powerful engine of bidirectional UnCAL, which has a
set of language-based tools: a bidirectional interpreter
[Hidaka et al., 2010], a graph and graph transformation
verifier [Inaba et al., 2011], an optimizer to improve
efficiency [Hidaka et al., 2011a], and a checker of valid
updates in the backward transformation [Nakano et al.,
2011]. The key contributions in this implementation
are (1) a translation of UnQL+ into UnCAL to enable
the engine of bidirectional UnCAL to execute UnQL+

bidirectionally, and (2) a bidirectional graph contraction
algorithm for contracting bisimilar UnCAL graphs
so that an ordinary model will have a bidirectional
correspondence with an UnCAL graph.

In the rest of this section, we will focus on the explo-
ration of UnQL+, the bidirectional graph contraction al-
gorithm, and the translation from UnQL+ to UnCAL.
4.1 Model Transformation in UnQL+

UnQL+ is the language the GRoundTram system
provides for users to describe (bidirectional) model
transformations. It is an extension of the well-known
UnQL [Buneman et al., 2000], a graph querying lan-
guage, which is compositional and can be implemented
by FO (TC) (first order with transitive closure) with
PTIME time complexity for graph querying.

Figure 7 gives the core syntax of UnQL+. A graph
transformation is described by a template expression to
construct a graph from graphs that are bound by graph
variables. The expression {l1 : t1, . . . , ln : tn} creates a
new node having n outgoing edges labeled li and pointing
to the root of the graph computed from ti. The union g1∪
g2 constructs a graph with a root sharing the roots of g1

and g2. The variable expression $g returns the graph that
is bound by $g in the environment (i.e., a mapping from
variables to graphs). The conditional expression has the
usual meaning, i.e., choosing different branch according
to the (binding) condition B.

Like other query languages, UnQL+ has a convenient
template expression select t where bs , which is used
to select the subgraphs satisfying the a sequence of con-
ditions bs , binds them to variables, and construct a result
according to the template expression t. For instance, the
following query extracts all persistent classes from the
class model in Figure 4, which is assumed to be bound
by $db.

select $class where
{Association.(src|dest).Class : $class} in $db,
{is persistent : {Boolean : true}} in $class

This query returns all bindings of the variable $class sat-
isfying the two conditions in the where clause. The first
condition is to find bindings of $class by matching the
regular path pattern Association.(src|dest).Class with
the graph bound by $db, while the second condition is to
ensure that the class is persistent.

In model transformations, one often wants to replace

Progress in Informatics No.10 (2013.3)

(template) T ::= {L : T, . . . , L : T} | T ∪ T | $g
| if BC then T else T
| select T where B, . . . , B
| replace Rp → $G by T in T where B, . . . , B
| extend Rp → $G with T in T where B, . . . , B
| delete Rp → $G in T where B, . . . , B
| let sfun fname(L : $G) = . . . in fname(T)

(binding) B ::= Gp in $G | BC
(condition) BC ::= not BC | BC and BC | BC or BC

| isEmpty($G) | L = L | L 6= L | L < L | L ≤ L
(label) L ::= $l | a

(label pattern) Lp ::= $l | Rp
(graph pattern) Gp ::= $G | {Lp : Gp, . . . , Lp : Gp}
(regular path pattern) Rp ::= a | | Rp.Rp | (Rp|Rp) | Rp? | Rp∗ | Rp+

Fig. 7 Syntax of UnQL+

a subgraph satisfying a certain condition by another
graph, and it is onerous to describe such transformations
using select-where because some context structure must
be copied and propagated. To this end, we introduce
three new template expressions, namely, replace-where,
extend-where, and delete-where.

• The replace-where expression replaces a subgraph
with a new graph. For the following replace-where
expression,

replace r → $v by e1 in e2 where b1, . . . , bn

the semantics of this expression are that, starting
from the root node of e2, it traverses every path and
replaces the node $v , which is on each path that
matches r and satisfies b1∧...∧bn, by e1. Consider
the class model again, prefixing every name of the
class by “class ” can be done as follows. Note that
”ˆ” is a built-in function for string concatenation.

replace ∗ .Class.name.string → $u
by {(”class ”̂ $name) : {}} in $db
where {$name : {}} in $u

• The delete-where expression is used to describe the
deletion of part of the graph.

For the following delete-where expression,

delete r → $v in e where bs

the semantics of this expression are that, starting
from the root node of e, it traverses every path and
deletes the node $v , which is on each path that
matches r and satisfies bs . For instance, we may
eliminate all persistent classes by

delete Association.(src|dest).Class → $c
in $db

where {is persistent.Boolean : true}
in $c

where the subgraph matching $c will be deleted
from its original graph $db.

• The extend-where expression describes the exten-
sion of a graph with another graph.

For the following extend-where expression,

extend r → $v with e1 in e2 where bs

the semantics of this expression are that, starting
from the root node of e2, it traverses every path
and extends the node $v , which is on each path that
matches r and satisfies bs , with e1. For example,
we write the following transformation to add date
information to each class.

extend ∗ .class → $c
with {date : ”2008/8/4”}

in $db

These three new template expressions can be automat-
ically translated to structural recursions in UnCAL (see
Section 4.3).

Unlike most rule-based model transformation lan-
guages, where model transformation composition is
not straightforwardly supported [Ehrig et al., 2005],
UnQL+ is functional and compositional; smaller model
transformations can be composed to form bigger ones
(see Section 2 and Section 5).
4.2 Bidirectional Graph Contraction

As explained in Section 3, our graph model is based
on bisimulation equivalence, which means bisimilar
graphs cannot be distinguished. Moreover, since UnCAL
is based on bisimulation, a transformation may introduce
redundant nodes that are bisimilar to each other. There-
fore, after a transformation such redundancy has to be
eliminated in a normalization phase.

Fortunately, for any set of graphs that are bisimilar
to each other, there exists a unique normal form up to
isomorphism and we can obtain the normal form after
a transformation by using the partition refinement algo-
rithm of Paige and Tarjan [Paige and Tarjan, 1987]. The
algorithm’s complexity is O(|E| log |V |), where |E| and
|V | are the numbers of edges and nodes, respectively, and
we consider that this level of complexity would be accept-
able in practice. Although this algorithm works on node-
labeled graphs, we lift the algorithm to our edge-labeled

GRoundTram: ラウンドトリップ性 (well-behavedness) を満たす双方向モデル変換開発のための統合フレームワーク

graph model by converting edges labeled by l into two
unlabeled edges and a node between them labeled by l,
as described in [Buneman et al., 2000]. Any bisimilar
subgraphs are then contracted to one subgraph, in which
no pairs of nodes are bisimilar to each other. In partic-
ular, leaf nodes (nodes that have no outgoing edges) are
bisimilar to each other, so they all shrink to one node.

We carefully design our contraction algorithm so that
it forms a well-behaved bidirectional transformation
that has the (GETPUT) and (WPUTGET) properties ex-
plained in Section 3.3, in the sense that no modification
on the contracted graph results in no modification on
the uncontracted graph, while the modified uncontracted
graph can be obtained again after re-uncontracting the
graph obtained by contracting the modified uncon-
tracted graph. For example, suppose the set of nodes
V1 = {v11 , . . . , v1M } are contracted to v1, and the set of
nodes V2 = {v21 , . . . , v2N

} are contracted to v2. Further,
suppose an edge (v1, l, v2) is inserted in the contracted
graph. As a result, edges labeled l are inserted between
V1 and V2 in the uncontracted graph. If M > 1 and
N > 1, then edges labeled l are inserted only between
pairs of nodes that were originally connected in the
uncontracted graph, although all-to-all connections from
V1 to V2 are also well-behaved. If no pair of nodes were
originally connected, then the above all-to-all connection
is used.

It is worth noting that (WPUTGET) law (instead
of PURGET) here is not caused by the duplication of
forward transformation. Violation of (PUTGET) law
occurrs when the modification of the target makes
non-bisimilar nodes bisimilar. For example, suppose
source graph {a:{b:{}}, a:{c:{}}}. Contraction will
produce {a:{b:{}}, a:{c:{}}}. And suppose the label
c is modified to b in the contracted graph. Then back-
ward transformation will produce {a:{b:{}}, {b:{}}}.
Next foward transformation (contraction) will produce
{a:{b:{}}}, which is not isomorphic to previous target
{a:{b:{}}, {b:{}}}, although they are bisimilar. Since
contraction transforms bisimilar graphs to its normal
form up to isomorphism, the non-isomorphic targets
should be considered different, so only (WPUTGET) law
is satisfied.

4.3 Translating UnQL+ to UnCAL

UnQL+ is different from UnCAL in that it uses four
important template expressions, namely select, replace,
extend, and delete, to describe graph transformations
rather than using structural recursion. In this section, we
show that all these template expressions can be translated
into structural recursions in UnCAL.

The select expression, which is inherited from UnQL,
can be translated into structural recursion in [Buneman
et al., 2000] (the explanation is omitted). According to
the semantics described in Section 4.1, the delete and ex-
tend expressions can be defined in terms of the replace

expression as:

delete Rp → $v in e1 where bs
⇒ replace Rp → $v by {} in e1 where bs

extend Rp → $v with e1 in e2 where bs
⇒ replace Rp → $v by $v ∪ e1 in e2 where bs

Therefore, what we need to show is how the replace ex-
pression is translated into a structural recursion.

Our idea for this translation is to use structural recur-
sion to simulate the behavior of a deterministic finite au-
tomaton (DFA) for finding the nodes in the graph where
the replace operation is to be applied. For the select ex-
pression in UnQL, NFA is used to define the structural
recursion for finding the nodes in graph to be selected
[Buneman et al., 2000]. The reason we use a DFA instead
of an NFA is to keep the context correct. The detailed ex-
planation is provided at the end of this section.

Now, consider the following general form of the re-
place expression.

replace Rp → $v by e1 in e2 where bs

First, we translate the regular path pattern Rp into
a DFA (Q,Σ$l , δ, q0, F), where Q = {q0, . . . , qN}
is a finite set of states, Σ$l = Σ ∪ {$l} (where
Σ = {l0, . . . , lK}) is a finite set of labels used in Rp,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is
the start state, and F ⊆ Q is a set of accept states. We
use the special label $l to denote a label other than those
used in Rp.

Next, we introduce N + 1 functions hq0 , . . . , hqN
,

where hqi corresponds to state qi, and define each hqi

as a structural recursion in the following way. For each
label l ∈ Σ$l , we define

hqi({l : $v}) = eij

and construct a graph with eij by considering two cases.
Note that j ranges over transitions from qi. If δ(qi, l) /∈ F
(i.e., transition from qi through l does not reach to an
accept state), we keep the context by propagating l and
continuing the recursive computation by defining

eij = {l : hδ(qi,l)($v)}.

Otherwise, we check whether $v satisfies the condition
bs . If it does, we replace the graph with the query result
of e1 satisfying bs:

eij = if isEmpty (select {“found”} where bs)
then {l : hδ(qi,l)($v)}
else {l : (select e1 where bs)}.

The condition isEmpty(...) in the if -expression checks
whether the condition bs holds. Note that since e1 might
be evaluated to {}, the checking expression should not be
select e1 where bs .

By applying the function associated with the initial
state to e2, we get a UnQL expression having both struc-
tural recursions and select expressions. Finally, since
the select expressions can be translated into structural
recursions by using the existing method, we can get
structural recursions in UnCAL.

Progress in Informatics No.10 (2013.3)

replace ∗ .(a|c)− > $v
by $v ′

in $db
where {g : $u} in $v ,

{ ∗ .d : $v ′} in $v

(a) A replace expression

s1

a

c

s0

$l
c

a

$l

(b) DFA for ∗ .(a|c)

let sfun hs0({a : $v}) = if isEmpty(e1)
then {a : hs1($v)}
else {a : e2}

| hs0({c : $v}) = if isEmpty(e1)
then {c : hs1($v)}
else {c : e2}

| hs0({$l : $v}) = {$l : hs0($v)}
sfun hs1({a : $v}) = if isEmpty(e1)

then {a : hs1($v)}
else {a : e2}

| hs1({c : $v}) = if isEmpty(e1)
then {c : hs1($v)}
else {c : e2}

| hs1({$l : $v}) = {$l : hs0($v)}
in hs0($db)
where e1 ≡ select {“found” : {}}

where ({g : $u} in $v), ({ ∗ .d : $v ′} in $v)
e2 ≡ select $v ′

where ({g : $u} in $v), ({ ∗ .d : $v ′} in $v)

(c) Translated structural recursion

Fig. 8 A Translation Example

7

6

x

5

c

4

a

3

g

2

m

1

n

0

d

D

(a) A Source Graph

10

9

c

8

a

7

D

6

c

5

a

4

g

3

m

2

n

1

d

D

0

x

(b) A Target Graph

Fig. 9 Source graph and and its transformation by
replace expression in Figure 8(a)

Example 1. Our algorithm maps the replace expression
shown in Figure 8(a) to the structural recursion in
Figure 8(c) via the DFA obtained from ∗.(a|c) in
Figure 8(b).

This example also demonstrates the user-friendliness
of the replace syntax, since without this extension, we
have to directly code the mutually recursive function in
Figure 8(c), after manually constructing the correspond-
ing DFA in Figure 8(b). This manual coding would be
error-prone and much more verbose than the replace
syntax.

Now, let us show the correctness of the above
translation from UnQL+ to UnCAL. As described in
Section 4.1, we interpret the expression

replace r → $v by e1 in e2 where bs

so that, starting from the root node of e2, it traverses every
path and replaces the node $v , which is on each path that
simultaneously matches r and satisfies bs , by e1 (actually
select e1 where bs should be used instead of e1 to ob-
tain the bindings from bs). More formally, it is intended
to work equivalently to the following pseudo code.

let sfun f({$l : $v}) =
if MATCH[r, bs]($v)
then {$l : select e1 where bs}
else {$l : f($v)}

in f(e2)

where MATCH[r, bs] is a pseudo predicate that is
evaluated to be true if and only if $v is the first node
on the path from the root that matches r and satisfies
bs . All branches in our desugaring have either the form
{$l : select e1 where bs} or {$l : f($v)}. Thus,
what we have to prove is that the MATCH[r, bs] pseudo
predicate is correctly encoded in the mutual recursion
of structural recursive functions. First, whether the
node $v matches r is encoded in the mutual recursion,
which simulates the behavior of the deterministic
finite automaton (DFA). This is a standard technique
to represent regular patterns. Next, whether the node
$v satisfies bs is encoded in a if -expression having
isEmpty(select {“found”} where bs) as its con-
dition. This condition holds if and only if bs does
not hold, since isEmpty(e) holds if and only if e is
evaluated into {}. Thus, this if -expression results in
select e1 where bs when bs holds. Otherwise, it
results in keeping the input label as $l , together with
calling the function associated with the next state in the
DFA. Therefore, the MATCH[r, bs] pseudo predicate is
correctly encoded in our desugaring code.

Example 2. Figure 9(b) shows the result of using the
replace expression in Figure 8(a) to transform the cyclic
graph in Figure 9(a). This example illustrates what hap-
pens if a pattern matches the middle of a cycle. Since
the replace expression captures the first match along the
path, node 4 in Figure 9(a) matches for replacement. Note
that DFA in Figure 8(b) only corresponds to a path in
the replace clause, but the where clause also works to

GRoundTram: ラウンドトリップ性 (well-behavedness) を満たす双方向モデル変換開発のための統合フレームワーク

specify the matching node. Therefore, even though node
5 also matches by virtue of the DFA, it does not actually
match since it does not satisfy the where clause. The ob-
tained binding of $v ′ is a subgraph under node 0, bound
by the regular path pattern ∗.d. The subgraph under node
8 in Figure 9(b) is a copy of the subgraph under node 0.
The entire correspondence of the source nodes to target
nodes is

7 → {0}
6 → {10, 7}
5 → {9, 6}
4 → {5}
3 → {4}
2 → {3}
1 → {2}
0 → {8, 1}

The ’first match’ semantics correspond to a translation al-
gorithm which uses select to generate subgraphs in the
by clause, since the select construct itself does not con-
duct recursive replacement as replace can.

Necessity of DFA in the translation of UnQL+

We give a detailed explanation of why DFA is nec-
essary for translation of replace/delete/extend con-
structs.

Automata created for replace/delete/extend play a
role that is different from those created for select.

For select, a regular path pattern (RPP) represents the
paths from a node to target nodes reached by the paths
and all the subgraphs below the target nodes are unified
by graph union ∪ and returned as a result. Multiple
matches from a given node through identical labels are
encoded in an automaton by transitions (nondetermin-
istic branches) to different sub-automata that encodes
different subsequent patterns. This is implemented in
sfun that calls different sfuns associated with the target
states and unify the graphs returned by those called
sfuns by graph union ∪. If, during the traversal, no
further match is possible for the RPP, then no further
transition in the automata is possible (i.e., dead state is
reached) and correspondingly the sfun returns empty
({}). Note that there is no semantic problem if the NFA
for select is determinized. It is just unnecessary to
determinize in order to preserve semantics. Also note
that by dead sates, we mean states with no transitions,
not useless states like those unreachable from the initial
state.

Instead, extend uses RPP to specify target nodes and
unify the subgraphs below each of these nodes with a
given subgraph by ∪, while the rest of the input graph
is kept intact. It is implemented by traversing from the
top as select does, copying the traversed path, instead of
discarding the traversed path in case of select. Before
reaching the target node during the traversal, if no more
match is possible, then the original subgraph should just
be returned. This situation is also represented by a spe-
cial dead state in the automata encoding RPP, and corre-
sponding sfun just returns the subgraph. On the other
hand, if transitions with an identical label have multi-
ple matches, NFA based encoding would utilize different
sub-automata for the targets of these transitions and cor-

responding sfun unifies the results by ∪. Suppose input
graph $db = {a : {b : {x : {}}}} and transformation

extend (a.b)|(a.c) → $v with {y : {}} in $db

The NFA approach would generate an automaton in
which target sub-automata from the initial state via
transition by a would be different, each encoding the
rest of the patterns b and c. So corresponding sfun
would call two sfuns for input a and unify them.
Then, the former sub-automaton would copy b and
then produce matching result by unifying {x : {}}
and given graph {y : {}}, thus, {b:{x:{}, y:{}}}. On
the other and, the latter sub-automaton would produce
non-matching result after copying b the original sub-
graph, thus, {b:{x:{}}}. So the unified result would
be {a:{b:{x:{}, y:{}}}, a:{b:{x:{}}}}. However, se-
mantics of extend should return {a:{b:{x:{}, y:{}}}}
instead. Although they are trace equivalent, they are
not bisimilar. On the contrary, DFA approach produces
DFA with only one target state from the transition by
label a from the initial state. The target sub-automaton
is only one. Therefore, corresponding sfun produces
linear preceding paths before reaching target node of
the RPP, i.e., {a : {b : }}. Similar arguments apply
for replace and delete. Therefore, DFA is essential
to implement extend/replace/delete correctly. It
is true that exponential blowup might occur during
determinization, however, if the RPP is not complex, i.e.,
it is not large and corresponding NFA does not include
many nondeterministic branches, the number of states
will remain moderate. Note that the need of DFA does
not come directly from the dead states, but from the
problem of unifying the result of subautomaton which
might behave differently (some of which might reach
dead state and the other reach matching state, as in the
example given above).

5 Evaluation and Applications

Here, we demonstrate the power (expressiveness and
efficiency) of the GRoundTram system through the de-
velopment of a known nontrivial (bidirectional) model
transformation between UML class diagrams and rela-
tional databases models, and highlight its usefulness in
practice by giving a list of important applications devel-
oped by other groups using it.
5.1 Developing Bidirectional Class2RDB

Class2RDB is a model transformation proposed by
Bézivin et al. [2005] as a common benchmark example
for all the participants of the Model Transformation
in Practice workshop for comparing and contrasting
various approaches to model transformation. Class2RDB
maps Class models to RDB models. For instance, it
can be used to transform the Class model in Figure 3
into the RDB model in Figure 10. Class2RDB maps
each persistent class in a Class model to a table in the
RDB model. All attributes of the class and its subclasses
are mapped to columns in the corresponding table. If a
primary attribute belongs to the class, a pkey reference
from the table model element pointing the corresponding

Progress in Informatics No.10 (2013.3)

Table

name = "Person"

Column

name = "name"
 type = "String"

pkey cols

Column

name = "addr"
 type = "String"

cols

Column

name = "number"
 type = "Integer"

cols Fkey

fkeys

Table

name = "Phone"

Column

name = "number"
 type = "Integer"

pkey cols

refs

cols

Fig. 10 An RDB Model

Table 1 Summary of experiments (running time is
in CPU seconds)

direction no rewriting rewriting

Class2RDB forward 1.18 0.68
backward 14.5 7.90

PIM2PSM forward 0.08 0.07 (13)
backward 1.62 0.75

C2Osel forward 0.04 0.05 (11)
backward 0.26 0.27

C2Osel’ forward 0.05 0.04 (11)
backward 2.53 1.26

Ex1 forward 0.036 0.007 (1)
backward 0.83 0.69

column model element is established. If an attribute
belongs to its subclass which is persistent, a reference
describing foreign key to the corresponding table model
element is established.

We show that UnQL+ is powerful enough to (composi-
tionally) describe the forward transformation (from class
diagrams to relational database models), while getting the
backward transformation for free in our framework. Fig-
ure 11 shows the whole transformation in UnQL+. Let us
briefly explain how this UnQL+ program was developed
by splitting the transformation into two steps. In the first
step (denoted by the binding of $tables_step1), ev-
ery persistent class is mapped to a subgraph representing
table, which is connected to subgraphs that correspond
to columns originated from attributes of the class and its
subclasses. All subclasses are collected by using regu-
lar path patterns as shown in Section 4.1. If necessary,
references pkey and fkeys are added by an extend
construct in UnQL+, provided that the references refs
of Fkey do not point to the referring table because the
table may not have been constructed yet. They point
to the name of the referring table instead. In the sec-
ond step (denoted by the binding of $tables_step2),
each name pointed to by refs is replaced by the corre-
sponding table by using a replace construct.
5.2 Optimization and Efficiency

Next, we show that the forward and backward transfor-
mations can be run efficiently in a scalable manner, while
the inefficiency due to composition can be automatically
removed through our fusion optimization. The fusion op-
eration was originally designed to merge two successive
applications of structural recursions into one [Buneman
et al., 2000]. It was later enhanced in [Hidaka et al.,
2011a,b].

Table 1 summarizes the performance of bidirectional
transformations on various compositional transfor-
mations. The test used a MacOSX on a 17 inch
MacBookPro, with a 3.06 GHz Intel Core 2 Duo

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000

E
xe

cu
tio

n
C

P
U

 ti
m

e[
se

c]

No. of Nodes in the Source Graph

a2d_xc(bwd)
5.93e-7*x**2.65

a2d_xc(fwd)
9.29e-7*x**2.23

Fig. 12 Transformation Time v.s. Source Graph
Size

CPU. An edge-renaming algorithm was used in the
measurement, and no modification was actually made,
since it does not significantly affect the running time.
The rightmost column shows the running time with
rewriting optimization. The number of nodes and
edges of the graph (Figure 4) that encoded the Class
model (Figure 3) in Class2RDB were respectively 70
and 73. The sizes of the source models in the other
transformations were similar. (See the analysis at the end
of this subsection for the performance with respect to the
size of the input graph.) In the table, PIM2PSM stands
for Platform Independent Model to Platform Specific
Model transformation, C2Osel for transformation of
a customer oriented database into an order oriented
database, followed by a simple selection, and Ex1 for
the example from our previous paper [Hidaka et al.,
2009a], which in tern was borrowed from [Buneman
et al., 2000]. Ex1 is a composition of two structural
recursions. The numbers in parentheses show how often
the fusion transformation happened. Our rewrites led to
performance improvements in both directions. As the
run-time optimization, unreachable parts were removed
after every application of the UnCAL structural recur-
sion operator. This run-time optimization is effective
when the composed transformation has high selectivity
(generates small output from large input), whereas fusion
is effective when the selectivity is low. Note that this
optimization was turned off for C2Osel’. The slowdown
in C2Osel after rewriting accounts for this trade-off.
For the principles of this rewriting optimization, please
refer to our papers [Hidaka et al., 2011a,b]. You can
test other optimizations, like, e.g., subgraph computation
optimization, at our project’s website [BiG].

To account for the slowdown of the backward trans-
formation compared with the forward transformation, we
took a sample execution profile. The backward trans-
formation decomposes a graph using reachable subgraph
extraction computation. In addition, the structural recur-
sion let sfun . . . eb . . . in ea involves restoring the input
of the argument expression ea, which in turn requires ex-
amining environment produced by the backward trans-
formation of the structural recursion and superposing the
resultant graphs in order to restore the entire graph as the
updated target of the argument expression. The back-
ward transformation of PIM2PSM (after rewriting) uses
15 times more node id comparison operations compared

GRoundTram: ラウンドトリップ性 (well-behavedness) を満たす双方向モデル変換開発のための統合フレームワーク

select $tables_step2 where
$tables_step1 in

(select $tables where
{Class:$class} in (select $assoc where {Association.(src|dest):$assoc} in $db),
{is_persistent.Boolean:true} in $class,
$dests in (select {Class:$dest} where {(src_of.Association.dest.Class)+:$dest} in $class),
$related in ({Class:$class} U $dests),
$cols in (select {cols:{Column:{name:$n,type:$t}}}

where {Class.attrs.Attribute:{name:$n,type:$t}} in $related),
$tables in (select {Table:{name:$cname} U $cols} where {name:$cname} in $class),
$tables in (extend Table -> $table with $pkeys U $fkeys in $tables where

{cols:$cols} in $table,
{Column.name.String:{$cname:{}}} in $cols,
$pkeys in (select {pkey:$cols} where

{attrs.Attribute: {is_primary.Boolean:true, name.String:{$pname:{}}}} in $class,
$cname = $pname),

$fkeys in (select {fkeys:{Fkey:{cols:$cols, ref:$ref}}} where
{Class:{is_persistent.Boolean:true,

attrs.Attribute.name.String:{$aname:{}}, name:$ref}} in $dests,
$cname = $aname))),

$tables_step2 in (replace Table.fkeys.Fkey.ref -> $ref by {Table:$table} in $tables where
{Table:$table} in $tables_step1,
{String:{$rname:{}}} in $ref,
{name.String:{$tname:{}}} in $table,
$tname = $rname)

Fig. 11 Class2RDB in UnQL+

with the forward transformation. The node comparisons
are a result of adding or looking up nodes or edges in sets
or maps that are implemented by using balanced binary
trees in the OCaml standard library.

Figure 12 shows how the size of the source model
affects time to execute the a2d xc transformation
described in Section 3, in both directions. Lattice-like
regularly shaped strongly connected graphs are used as
the source. These execution times match the complexity
of PTIME mentioned in Section 4.1 for relatively large
(several thousand nodes) graphs.

5.3 Other Applications
The GRoundTram website [BiG] has a bunch of ex-

amples, big and small, and all the examples presented
in this paper can be tried through the demo website. In
addition, we would like to give the reader a rough idea
about the current status of GRoundTram uses by listing
applications that have been or are being developed by
other groups: they include bidirectional feature model
transformation [Wang et al., 2010](Peking University),
bidirectional transformation between VDM (Vienna De-
velopment Method) specifications and Java implemen-
tation [Ishikawa, 2011] (another group at National In-
stitute of Informatics), bidirectional transformation be-
tween Simulink diagrams and UML diagrams [Takayuki
Kozawa, 2011] (Waseda University), bidirectionalizing
ATL (ATLAS Transformation Language) with GRound-
Tram [Sasano et al., 2011] (Shibaura Institute of Tech-
nology), and co-evolution of Java models and codes [Yu
et al., 2012] (Open University & Shanghai Jiao Tong Uni-
versity). Moreover, Chen [2010] at Shanghai Jiao Tong
University identifies GRoundTram as a potential means
to synchronize the behavior model of concurrent systems.
All these activities indicate the promise of GRoundTram
as a practical tool.

As an example of our own experience in [Yu et al.,
2012], we extensively used the UnQL+ syntax as an in-
ternal representation that was automatically generated by

the blinkit† tool. Although it was not directly used by
users, it was a concise way of describing the user editing
operations to Java code, and also for exploiting high-level
optimization opportunities at this syntax level.

6 Related Work

Besides the related work in the introduction, we high-
light some others related to graph-based model transfor-
mation and linguistic approach to bidirectional transfor-
mation.

Our work is much related to research on model
transformation based on graph transformation.
AGG [Taentzer, 2003] is a rule-based visual tool
that supports typed (attributed) graph transformations,
including type inheritance and multiplicities. Triple
Graph Grammars (TGG) [Giese and Wagner, 2006,
Königs and Schürr, 2006] is intended as a declara-
tive specification of model-to-model integration rules.
MOFLON [Amelunxen et al., 2006] implements TGG
and adopts the visual notation of QVT Relational,
the OMG standard bidirectional model transformation
language. Giese and Hildebrandt [2009] proposed a
model synchronization algorithm based on TGG that
can synchronize large-scale models. Guerra et al. [2011]
proposed more general notion called ”inter-modelling”,
where a specification can be compiled into different
operational mechanisms not only for model-to-model
transformation but also for model matching and model
traceability. To perform forward and backward transfor-
mations, a pattern specification is compiled into Triple
Graph Grammar (TGG) operational rules.

Different from these rule-based approaches, ours is a
functional one that supports model transformation com-
position and its automatic optimization. As far as we are
aware, this is the first nontrivial functional and algebraic
framework for model transformation.

†http://computing-research.open.ac.uk/linkit/

Progress in Informatics No.10 (2013.3)

This study was inspired by the recent linguistic
approach to bidirectionalization of the tree transfor-
mation [Bohannon et al., 2008, Foster et al., 2005,
2007, Hu et al., 2008, Matsuda et al., 2007] for tree
data synchronization. One important feature of this
approach is clear bidirectional semantics, something
that is missing from most of the existing bidirectional
model transformation systems [Stevens, 2007]. Although
some attempts at using the linguistic approach have
been made [Antkiewicz and Czarnecki, 2007, Xiong
et al., 2007], it remains a challenge to provide a general
bidirectional framework for graphs which are more
complicated than trees, and our work is a big step in this
direction.

GRoundTram has grown out of our two-year effort
to realize the emergent idea presented in our short
paper [Hidaka et al., 2009b]. UnQL+ is based on the
graph query language UnQL [Buneman et al., 2000] but
it is significantly extended with a powerful language
construct replace that can handle transformation context.
It is also worth noting that a simple replace expression
was studied in [Hidaka et al., 2009a] but it can neither
deal with regular path expressions nor treat multiple
graph databases.

7 Conclusions

We proposed a novel algebraic framework called
GRoundTram to support systematic development of
bidirectional model transformation. Different from many
rule-based frameworks, our framework is functional and
algebraic, and based on a graph algebra and structural
recursion. Our new framework supports systematic de-
velopment of model transformations in a compositional
manner, has a clear semantics for bidirectional model
transformation, and can be efficiently implemented.

This is our first step towards bidirectional model pro-
gramming, a linguistic framework to support systematic
development of model transformation programs. In
the future, we will look more into relation between the
rule-based approach and the algebraic and functional
approach, and see how to integrate them into a more
powerful framework for bidirectional model transfor-
mation. One initial attempt has already been made
by integrating GRoundTram with ATL [Sasano et al.,
2011], and we plan to continue this line of research by
collaborating with the AtlanMod [Atl] team. In such
an integration of model transformation frameworks,
we need to automate the graph encoding of UML-like
generic diagrams that are not yet fully automated. Sev-
eral attempts towards automation had been made [Zhu
et al., 2012], and we plan to deal with Eclipse Modeling
Framework (EMF) models as well. Another direction
towards integration is the approach by Wider [2011]. In
this approach, asymmetric lens was implemented as an
internal DSL in Scala. Although it is not graph-based,
the Java-friendliness of the host language may make it
easier to integrate with the model driven engineering
framework.

Last but not least, we currently do not have any explicit

control over update policy in backward transformations.
The only property we have is well-behavedness described
by the (GETPUT) and the (WPUTGET). Even if multiple
source models may be possible as a result of backward
transformation, programmer do not have a way to choose
them. Controlling the choice is one of our important fu-
ture work.

Acknowledgments

We would like to thank the anonymous reviewers for
their thorough comments and constructive suggestions to
improve the paper. The anonymous ASE’11 reviewers
for the prior version of this paper also made helpful sug-
gestions. We also thank Kazutaka Matsuda, Kazuyuki
Asada, and Isano Sasano for their valuable discussions
with us. The research was supported in part by the Grand-
Challenging Project on the “Linguistic Foundation for
Bidirectional Model Transformation” of the National In-
stitute of Informatics, and a Grant-in-Aid for Scientific
Research for Encouragement of Young Scientists (B) No.
20700035, and a Grant-in-Aid for Scientific Research (B)
No. 22300012.

References

The AtlanMod team web site. http://www.emn.fr/
x-info/atlanmod/.

The BiG project web site. http://www.biglab.
org/.

Sergei M. Abramov and Robert Glück. Principles of
inverse computation and the universal resolving algo-
rithm. In The Essence of Computation, pages 269–295,
2002.

C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr.
MOFLON: A Standard-Compliant Metamodel-
ing Framework with Graph Transformations. In
A. Rensink and J. Warmer, editors, Model Driven
Architecture - Foundations and Applications: Sec-
ond European Conference, volume 4066 of Lecture
Notes in Computer Science (LNCS), pages 361–375,
Heidelberg, 2006. Springer Verlag, Springer Verlag.

Michal Antkiewicz and Krzysztof Czarnecki.
Framework-specific modeling languages with round-
trip engineering. In MoDELS 2006: Proceedings of
the 9th International Conference on Model Driven
Engineering Languages and Systems, pages 692–706.
Springer-Verlag, 2006.

Michal Antkiewicz and Krzysztof Czarnecki. Design
space of heterogeneous synchronization. In GTTSE
’07: Proceedings of the 2nd Summer School on Gen-
erative and Transformational Techniques in Software
Engineering, 2007.

Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Lau-
rence Tratt. Model transformation in practice work-
shop announcement. In Satellite Events at the
MoDELS 2005 Conference, pages 120–127. Springer-
Verlag, 2005.

http://www.emn.fr/x-info/atlanmod/
http://www.emn.fr/x-info/atlanmod/
http://www.biglab.org/
http://www.biglab.org/

GRoundTram: ラウンドトリップ性 (well-behavedness) を満たす双方向モデル変換開発のための統合フレームワーク

Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A.
Vaughan. Relational lenses: a language for updatable
views. In Stijn Vansummeren, editor, PODS, pages
338–347. ACM, 2006.

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce,
Alexandre Pilkiewicz, and Alan Schmitt. Boomerang:
resourceful lenses for string data. In George C. Nec-
ula and Philip Wadler, editors, POPL ’08: ACM
SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages, pages 407–419. ACM, 2008.

Peter Buneman, Mary F. Fernandez, and Dan Suciu.
UnQL: a query language and algebra for semistruc-
tured data based on structural recursion. VLDB Jour-
nal: Very Large Data Bases, 9(1):76–110, 2000.

Yuting Chen. A bidirectional graph transformation ap-
proach to analysis of concurrent software models. In
Software Engineering and Service Sciences (ICSESS),
2010 IEEE International Conference on, pages 339 –
343, july 2010. doi: 10.1109/ICSESS.2010.5552447.

Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu,
Ralf Lämmel, Andy Schürr, and James F. Terwilliger.
Bidirectional transformations: A cross-discipline per-
spective. In International Conference on Model Trans-
formation (ICMT 2009), pages 260–283. LNCS 5563,
Springer, 2009.

Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki.
From state- to delta-based bidirectional model trans-
formations: the asymmetric case. Journal of Object
Technology, 10:6: 1–25, 2011.

Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Her-
mann, and Gabriele Taentzer. Information preserving
bidirectional model transformations. In Proceedings of
the 10th international conference on Fundamental ap-
proaches to software engineering, FASE’07, pages 72–
86, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
978-3-540-71288-6.

Karsten Ehrig, Esther Guerra, Juan de Lara, Laszló
Lengyel, Tihamér Levendovszky, Ulrike Prange,
Gabriele Taentzer, Dániel Varró, and Szilvia Varró-
Gyapay. Model transformation by graph transfor-
mation: A comparative study. Presented at MTiP
2005. http://www.inf.mit.bme.hu/FTSRG/
Publications/varro/2005/mtip05.pdf,
2005.

John Ellson, Emden R. Gansner, Eleftherios Koutsofios,
Stephen C. North, and Gordon Woodhull. Graphviz
and dynagraph - static and dynamic graph drawing
tools. In GRAPH DRAWING SOFTWARE, pages 127–
148. Springer-Verlag, 2003.

J. Nathan Foster, Michael B. Greenwald, Jonathan T.
Moore, Benjamin C. Pierce, and Alan Schmitt. Com-
binators for bi-directional tree transformations: a lin-
guistic approach to the view update problem. In POPL

’05: ACM SIGPLAN–SIGACT Symposium on Prin-
ciples of Programming Languages, pages 233–246,
2005.

J. Nathan Foster, Michael B. Greenwald, Jonathan T.
Moore, Benjamin C. Pierce, and Alan Schmitt. Combi-
nators for bidirectional tree transformations: A linguis-
tic approach to the view-update problem. ACM Trans.
Program. Lang. Syst., 29(3), 2007.

Miguel Garcia. Bidirectional synchronization of multiple
views of software models. In Proceedings of DSML-
2008, volume 324 of CEUR-WS, pages 7–19, 2008.

Holger Giese and Stephan Hildebrandt. Efficient model
synchronization of large-scale models. Technical Re-
port 28, Hasso Plattner Institute at the University of
Potsdam, 2009.

Holger Giese and Robert Wagner. Incremental model
synchronization with triple graph grammars. In MoD-
ELS 2006: Proceedings of the 9th nternational Con-
ference on Model Driven Engineering Languages and
Systems, pages 543–557. Springer Verlag, 2006.

John Grundy, John Hosking, and Warwick B. Mugridge.
Inconsistency management for multiple-view software
development environments. IEEE Trans. Softw. Eng.,
24(11):960–981, 1998.

Esther Guerra, Juan Lara, and Fernando Orejas. Inter-
modelling with patterns. Software & Systems Mod-
eling, pages 1–30, 2011. ISSN 1619-1366. doi:
10.1007/s10270-011-0192-1.

Frank Hermann, Hartmut Ehrig, Fernando Orejas,
Krzysztof Czarnecki, Zinovy Diskin, and Yingfei
Xiong. Correctness of model synchronization based
on triple graph grammars. In Lecture Notes in Com-
puter Science, volume 6981, pages 668–682. Springer,
2011. ISBN 978-3-642-24484-1.

Soichiro Hidaka, Zhenjiang Hu, Hiroyuki Kato, and
Keisuke Nakano. Towards a compositional approach
to model transformation for software development. In
SAC’09: Proceedings of the 2009 ACM symposium on
Applied Computing, pages 468–475, New York, NY,
USA, 2009a. ACM.

Soichiro Hidaka, Zhenjiang Hu, Hiroyuki Kato, and
Keisuke Nakano. A compositional approach to bidi-
rectional model transformation. In ICSE Companion,
pages 235–238. IEEE, 2009b.

Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hi-
royuki Kato, Kazutaka Matsuda, and Keisuke Nakano.
Bidirectionalizing graph transformations. In ACM
SIGPLAN International Conference on Functional
Programming, pages 205–216. ACM, 2010.

Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hi-
royuki Kato, Kazutaka Matsuda, Keisuke Nakano, and
Isao Sasano. Marker-directed Optimization of UnCAL

http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/mtip05.pdf
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/mtip05.pdf

Progress in Informatics No.10 (2013.3)

Graph Transformations. In Proceediings of 21st Inter-
national Symposium on Logic-Based Program Synthe-
sis and Transformation (LOPSTR 2011), LNCS, pages
123–138, Odense, Denmark, 2011a.

Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hi-
royuki Kato, Kazutaka Matsuda, Keisuke Nakano, and
Isao Sasano. Marker-directed Optimization of Un-
CAL Graph Transformations (revised version). Tech-
nical Report GRACE-TR-2011-06, GRACE Center,
National Institute of Informatics, November 2011b.

Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hi-
royuki Kato, and Keisuke Nakano. GRoundTram:
An integrated framework for developing well-behaved
bidirectional model transformations (short paper). In
26th IEEE/ACM International Conference On Auto-
mated Software Engineering, pages 480–483. IEEE,
2011c.

Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, and Ak-
ihiko Takano. Tupling calculation eliminates multiple
data traversals. In ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’97), pages
164–175, Amsterdam, The Netherlands, June 1997.
ACM Press.

Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A
programmable editor for developing structured docu-
ments based on bidirectional transformations. Higher-
Order and Symbolic Computation, 21(1-2):89–118,
2008.

Kazuhiro Inaba, Soichiro Hidaka, Zhenjiang Hu,
Hiroyuki Kato, and Keisuke Nakano. Graph-
transformation verification using monadic second-
order logic. In Peter Schneider-Kamp and Michael
Hanus, editors, PPDP, pages 17–28. ACM, 2011.

Fuyuki Ishikawa. Towards customizable and bi-
directionally traceable transformation between vdm++
and java. In The 9th Overture/VDM Workshop, June
2011.

Frédéric Jouault and Jean Bézivin. KM3: A DSL
for metamodel specification. In Formal Methods for
Open Object-Based Distributed Systems, pages 171–
185. LNCS 4037, Springer, 2006.

Felix Klar, Alexander Königs, and Andy Schürr. Model
transformation in the large. In Ivica Crnkovic and An-
tonia Bertolino, editors, ESEC/SIGSOFT FSE, pages
285–294. ACM, 2007.

Alexander Königs and Andy Schürr. Tool integration
with triple graph grammars - a survey. Electronic
Notes in Theoretical Computer Science, 148(1):113–
150, February 2006.

Ralf Lämmel. Coupled Software Transformations (Ex-
tended Abstract). In First International Workshop on
Software Evolution Transformations, November 2004.

Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano,
Makoto Hamana, and Masato Takeichi. Bidirection-
alization transformation based on automatic derivation
of view complement functions. In 12th ACM SIGPLAN
International Conference on Functional Programming
(ICFP 2007), pages 47–58. ACM Press, October 2007.

Keisuke Nakano, Soichiro Hidaka, Zhenjiang Hu,
Kazuhiro Inaba, and Hiroyuki Kato. Simulation-based
graph schema for view updatability checking of graph
queries. Technical Report GRACE-TR11-01, GRACE
Center, National Institute of Informatics, May 2011.

Robert Paige and Robert Tarjan. Three partition re-
finement algorithms. SIAM Journal of Computing,
16(6):973–988, 1987. doi: http://dx.doi.org/10.1137/
0216062.

Isao Sasano, Zhenjiang Hu, Soichiro Hidaka, Kazuhiro
Inaba, Hiroyuki Kato, and Keisuke Nakano. Toward
bidirectionalization of ATL with GRoundTram. In
Theory and Practice of Model Transformations, Fourth
International Conference, ICMT 2011, volume 6707 of
LNCS, pages 138–151. Springer, June 2011.

Perdita Stevens. Bidirectional model transformations in
QVT: Semantic issues and open questions. In Gre-
gor Engels, Bill Opdyke, Douglas C. Schmidt, and
Frank Weil, editors, Proc. 10th MoDELS, volume 4735
of Lecture Notes in Computer Science, pages 1–15.
Springer, 2007.

Perdita Stevens. A landscape of bidirectional model
transformations. In Ralf Lämmel, Joost Visser, and
João Saraiva, editors, Generative and Transforma-
tional Techniques in Software Engineering II, pages
408–424. Springer-Verlag, Berlin, Heidelberg, 2008.
ISBN 978-3-540-88642-6.

Perdita Stevens. Bidirectional model transformations in
qvt: semantic issues and open questions. Software and
System Modeling, 9(1):7–20, 2010.

Gabriele Taentzer. AGG: A graph transformation envi-
ronment for modeling and validation of software. In
John L. Pfaltz, Manfred Nagl, and Boris Böhlen, edi-
tors, AGTIVE, volume 3062 of LNCS, pages 446–453.
Springer, 2003.

Takayuki Kozawa. Bidirectionaltransforma-
tion with UML model for Simulink model
maintainability improvement (in Japanese).
http://www.washi.cs.waseda.ac.jp/
papers/2011/submission/1w070119.pdf,
February 2011. Summary of the bachelor’s thesis
at the Department of Conputer Science, Waseda
University.

Bo Wang, Zhenjiang Hu, Qiang Sun, Haiyan Zhao,
Yingfei Xiong, and Hong Mei. Supporting feature
model refinement with updatable view. Technical Re-
port GRACE-TR-2010-05, GRACE Center, National
Institute of Informatics, May 2010.

http://www.washi.cs.waseda.ac.jp/papers/2011/submission/1w070119.pdf
http://www.washi.cs.waseda.ac.jp/papers/2011/submission/1w070119.pdf

GRoundTram: ラウンドトリップ性 (well-behavedness) を満たす双方向モデル変換開発のための統合フレームワーク

Arif Wider. Towards combinators for bidirectional model
transformations in scala. In Anthony M. Sloane and
Uwe Aßmann, editors, SLE, volume 6940 of Lecture
Notes in Computer Science, pages 367–377. Springer,
2011. ISBN 978-3-642-28829-6.

Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao,
Masato Takeichi, and Hong Mei. Towards automatic
model synchronization from model transformations. In
22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2007), pages 164–
173. ACM Press, November 2007.

Yijun Yu, Yu Lin, Zhenjiang Hu, Soichiro Hidaka, Hi-
royuki Kato, and Lionel Montrieux. blinkit: Maintain-
ing Invariant Traceability through Bidirectional Trans-
formations. In Proceediings of the 34th International
Conference on Software Engineering (ICSE 2012),
pages 540–550, Zurich, Switzerland, June 2012.

Yiqing Zhu, Tao Zan, Soichiro Hidaka, and Zhenjiang
Hu. iGRT: A generic interface for GRoundTram. Tech-
nical Report GRACE-TR-2012-06, GRACE Center,
National Institute of Informatics, 2012.

