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Background

 HORS (Higher Order Recursion Scheme)
is very powerful and expressive.

* N-EXPTIME harproblems!



Computational Complexity w.r.t.
Grammar Size and Data Size

* MSO on words/trees:

— Emptiness checking is non elementary (HYPEREXP
for the size of the formula.

— The class of languages it represents is regular.
* O(n)time, O(1)space membership wrt the word length

“MSO on words is a verrrrrrrrry concise
representation for relatively simple languages.”



How about HORS?

* HORS:

— Emptiness, Model Checking, Containment by
Regular Languages, ... are N-EXPTIME hard
— What is known about the languages it describes?

* The class of languages it represents is ????
e ??7?7ime, ??7?7space membership wrt the word length.



|Greibach 70}

Aho and Ullman [3] have shown that the indexed languages can be
characterized by AFAs whose data structure is a pushdown store of pushdown
stores, with an added duplicate order which replicates the topmost store.
They call these degree 2 pushdown stores and show that this idea can be
extended to degree n, for any #, and that all these families have decidable
emptiness problems and are contained in the context-sensitive languages.

3. A. V. Auo anp ]. ULLMAN, private communication.

Today’s talk verifies the statement
(even for wider class of languages).

[Gr70] S.A.Greibach nFull AFLs and Ne &t @trdl 161




Our Approach

Intermediate Data Size

If they are at most of size M at any point, O(M) space & O(2M) time.



Outline of This Talk

* Target Language
— Higher-order Tree Transducers

e 15t-order Decomposition
— Sketch of the construction

* Garbage Free Form

— Derived consequences

— Sketch of the construction

%



HTT [Engelfriet&Vogler 88]

Higher-order “single-input” “safe” tree transducer

Mult :: Tree A Tree
Mult (Pair( X4, x,)) C lter (x ,)(Add(x ))( 2)

lter :: Tree A (Tree A T[Iee) A Tree A Tree
lter  (S(x) )(f)(y) C lter (x)(N(f(y))
Iiter  (Z)(f)(y) Cy

Add :: Tree A Tree VA Tree
Add(S(x))(y) C Add(x)( S(y))
Add(2)(y) Cy



HTT

e Set of mutually recursive functions

— Defined in terms of induction on a single input tree

* Input trees are always consumed, not newly constructed
* Output trees are always created, but not destructed

— Rest of the parameters are ordered by the order
* Multiple parameters of the same order is ok but in uncurried form

Inductive InputParam Order-1 Paran(s) OrderO Paran(s) Result

A —— A

lter . Tree A (Tree A Tree) A Tree A Tree

Iter  (S(x) )(M(y) C lter (x)(N((y))
iter  (2)(N(y) Cy




HTT

Nondeterminism (2 and D )

Subseq :: Tree A Tree 5
Subseq( Cons(x, xs)) C Cong(x, Subseq(Xxs))

© Subseq(xs)
Subseq(Nil )  C Nil
Subseq( Other) C 2

In this talk, evaluation strategy is unrestricted (= call-by-name).
But call-by-value can also be dealt with.



HTT

e Notation: Nn-HTT

— is the class of Tree A Tree functions
representable by HTTs of order  n.

— {Subseq} is O-HTT, {Mult, Iter , Addre 2-HTT

Subseq :: Tree A Tree

Mult :: Tree A Tree
lter © Tree A (Tree A Tree) A Tree A Tree
Add :: Tree A Tree A Tree



Order-n to Order-1

THEOREM [EV88] [EV86]
(n-HTT)  (1-HTT)"
n-th order tree transducer is representable

by a n-fold composition of 15t-order tree
transducers. (“=or R ?” is left open, as far as | know.)

[EV86] J.Engelfriet& H. Vogler, APushdown Machi nes fTCB42 M
[EV88]b,Ai Hi gh Level Tree Transducer s aAtinfl26 p

}u )




Proof: n-HTT = 1-HTT 2 (n-1)-HTT

ldea:
Represent 15t-order term TreeA Tree by a Tree.

F i Tree A TreeATree F Tree A Tree
F(2)(y) C S(S(y)) F(2) C S(S(Y))
Represent 1%t-order application symbolically, too.

A C Fx) 2) $ AC @FKX .Z)




Proof: n-HTT = 1-HTT 2 (n-1)-HTT

Represent 15t-order things symbolically.

F ree A Tree <
F2) € sstyy | A C @FK.Z)

Then a 1-HTT performs the actual “application”.

Eval (@f, b))(y) C Eval(f, Eval(b)(y))

Eval (Y)(y) Cy
Eval ( S(x) )(y) C S(kBval(x)(y) )

Eval (2)(y) C 7



Mult (Pair( x,, x,))C @(ter (x )(Add(x ,)) ,Z2)

lter ( S(x))(f)
lter ( Z)(f)
Add( S(x))

Add( 2)

C @fter () ,@(f,Y))
C Y
(Add(X) S(Y))

)¢ )¢

Milt ( Pair(S(2),S(2))

) @ Q)

e

[@]

2

| ter (S(Z) )(Add( S(2) )) @ @

— e .z

[@j @@ [] j lter (Z2)(Add( S(2))) [@

)

CD

[ @ @ Add( S(2) ) fﬂ

Add( S(2) ) Example




Eval (@f, b))(y) C:: Eval (f, Eval (b)(y))

Eval (Y)(y) Cy
Eval (S(x) )(y) C S(Eval (x)(y) )
Eval ( Z2)(y) C Z

Eval (|@: )  Z

S
| @ v
Eval (| @ ) - o s

[@] ZJ Eval ( @: ) | Z z Z@
3 @ Eva (Y} Eval (@) z
iy @uoy Bk
Y DD s o s

) )

Y Y Y

./ \— —




Why That Easy

* Relies on the ordered-by-order condition.

— No variable renaming is required! [Blum&Ong 09]

Eval ([ Y} Eval (@) z
o (Y]
o =

[BOO9]W. Blumand GH.L.Ong 7 The Saf e Llav g8 &l




Now, Decomposed.




Next, Make Intermediate Trees Small.

1-HTT

A mﬁﬂgu ééUA-A A A

i




THEOREM [l. & Maneth 08] [I. 09]'* Improvement)

Ot .. .e1-HTT Yt e OLHT]T 1, ...,T /e 1-HTT
for any (T, %2 ...21)(s) | t, |
there exist T (s)l so, Tis) Siq, ISi] ISiq], S=t

AT

|s| = number of nodes
[IMO8] K. Inaba& S.Maneth i The complexity of t rRESEICS

[Inaba09] K.lnabg A Compl exi ty and Expr essi ven eDsssertatan




Consequences : Range Membership

/I\/Iembership problem for A
the class Range(IHTT") of languages is
in DLINSPACE
_ in NP Y

That is, given (T,% ... 2 T;) and t, we can determine

“Ws.(T,2...2T)(s) 1"

in O( f(|ty|+...+|t,|) |t| )spaceand
in O(g(|t|+...+[t,|) poly(|t|]) )nondeterministic time.



Consequences : Range Membership

/I\/Iembership problem for A
the class Range(IHTT") of languages is
in DLINSPACE
_ in NP /

PROOF
Guess (in NP) or m . .

exhaustively try (in DLINSPACE)
all the intermediate trees: s ..

Then check Range( )l s and T.(s)l S,
both turn out to be feasible in DLINSPACE n NP.



Consequences : Range Membership

/I\/Iembership problem for
the class Range(IHTT") of languages is

~

In DLINSPACE
[ RE )
/ COROLLARY I | CSL (NLINSPACE) |

Higher-order safe recursion scheme, also

known as Ol-hierarchy, HO-PDA language,

Maslov hierarchy, generalized indexed
\/anguage, etc., is Context-Sensitive. )

order-n

Indexed (order-2)

[ CFL (order-1) ]
[ Regular (order-0) ]




Consequences : Linear-Size Inverse

\
Forall T.42..2T;€ 1-HTT", t€ Range(T. %...AT,)

there exists Ssuch that
. f(s)l t and |[s| < h(|t.2...2T,]) |t]

J

COROLLARY (by our constructive proof)
Right inverse of 1-HT T is computable in DLINSPACENNP.




How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”

A/\®AE>:> A@A




How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part

Ty )=t Ty]
A




How to Construct the “Garbage-Free” Form
Make each 1-HTT “productive”

by separating its “deleting” part,
and fuse the deleter to the left [en7s,771[Envoss][Enma02]

AT/\ h= EE




Repeat o RN SN EN
= RN EN T EN

use N N

LT ) Tay LT,

split _— - .
\Tlu_[z}laidﬂ Tg JLTy

Fuse e N ¢ — ’\

Split L% L \Lp
FuseilJlZ?”Ad‘ Tz, T3, J,T ’\
Split | Typagg | Ty Ty LT,
- 1 ( Ve -
[T_‘L;BAJ\ ! j__, ! 2’ 1 3, | 1 1




Key Part

Separate the “deleting” transformation

=l
/\:>A=/\:> A o A




Key Part

slogan: Work on every node

(T ,'must generate at least one node for each input node)

e L To
> A ® A




Work on Every Node K Visit All Nodes

Deleting HTTs

Gy ) € 728 v, [ }

F(S(ux ) © Exy) | Ly
5 Flx,)
5 G F(X,)

may not recurse down to a subtree.



Work on Every Node K Visit All Nodes

At least one choice
of nodeterminism

“deletes correctly”.

F(S0ax2) € GOIFX ) | T,

Nondeterministically delete every subtree! @ L }

Del( S(x4,Xx,)) C
S12(Del(x ,),Del( x,)) & S1_(Del(x ,))
o S 2(Del(x 5)) 9 S ()

—(S12(X4,X 5))
~(S1_(%y))
~(S_2(%5) )

~(S_0))

C GrIF(X )
C Gxp(2)

C >
C D [ T n’}




Work on Every Node K Work on Leaf

Erasing HTTs

F(S(x)) C GX)( 2)
G2)(y) C vy

may be idle at leaves.




Work on Every Node K Work on Leaf

Erasing HTTs

F(S(x)) C GX)( 2)
G2)(y) C vy

Inline Expansion F(S(2)) C Z [ ! n,}




Work on Every Node
K Work on Monadic Nodes

Skipping HTTs

F(SOOMNY 1Y 2. 3) € FOOY .Y .Y 1)
F(2) (YuY 2Y 3) C Done(yy 2y 3)

are good at juggling.



Work on Every Node
K Work on Monadic Nodes

Skipping HTTs

F(S(X) )Y 1.V 5.V 3) C_ F(X)(y 2.Y 3.Y 1)

F(2) (YwY 2:Y 3)

Nondeterministic deletion again.

C Done(y,y 2y 3)

Remember how argugments would’ve been shuffled. v

~(Z123) (Y1.Y 2 3)
F(Z2231)( Y1y 2y 3)
F(Z312)( Y1y 2Y 3)

O O3 O

Done(yqy 2y 3)
Done(ysy a3y 1)

Done(ysy 1,y 2)[ T ,}
N




Simple Arithmetic

Input size = #leaf +#monadic + #others

— For each leaf on the input, generate 1 node.
— For each monadic node, generate 1 node.

— Thus, #leaf + #monadic Output size

For any tree, #others < #leaf Output size

Add: #leaf + #monadic+ #others

So, Input size < Output Size* 2

Output size+2



Work on Nodes with Rank-2,3,...

 Input size < Output Size* 2

=1 (Bin( xq, X))(y) € Fr(x )( Fr(x ,)(y))
Fr(Ay) € Aly)
-r(B)(y) C Bl(y)

This bound is sufficient for deriving the results,
but we can improve this to Input size  Output Size
by deterministic deletion of leaves + inline expansion.



e L To
/\:> Ao A




Summary

* Order-n HTT A (Order-1 HTT)"
* Garbage Free Form

— L( Safe-HORS ) is context-sensitive.

e Future Direction @

— Extend it to Unsafe HTT
— Or, use it for proving

safe R unsafe




