Expressive Power of Safe HORS

Examined Through Decomposition of
Higher Order Programs to Garbage Free 15t Order Form

Kazuhiro Inaba

Joint work with Sebastian Maneth

at Shonan Meeting on
Automated Techniques for Higher-Order Program Verification

2011

Background

 HORS (Higher Order Recursion Scheme)
is very powerful and expressive.

* N-EXPTIME harproblems!

Computational Complexity w.r.t.
Grammar Size and Data Size

* MSO on words/trees:

— Emptiness checking is non elementary (HYPEREXP
for the size of the formula.

— The class of languages it represents is regular.
* O(n)time, O(1)space membership wrt the word length

“MSO on words is a verrrrrrrrry concise
representation for relatively simple languages.”

How about HORS?

* HORS:

— Emptiness, Model Checking, Containment by
Regular Languages, ... are N-EXPTIME hard
— What is known about the languages it describes?

* The class of languages it represents is ????
e ??7?7ime, ??7?7space membership wrt the word length.

|Greibach 70}

Aho and Ullman [3] have shown that the indexed languages can be
characterized by AFAs whose data structure is a pushdown store of pushdown
stores, with an added duplicate order which replicates the topmost store.
They call these degree 2 pushdown stores and show that this idea can be
extended to degree n, for any #, and that all these families have decidable
emptiness problems and are contained in the context-sensitive languages.

3. A. V. Auo anp]. ULLMAN, private communication.

Today’s talk verifies the statement
(even for wider class of languages).

[Gr70] S.A.Greibach nFull AFLs and Ne &t @trdl 161

Our Approach

Intermediate Data Size

If they are at most of size M at any point, O(M) space & O(2M) time.

Outline of This Talk

* Target Language
— Higher-order Tree Transducers

e 15t-order Decomposition
— Sketch of the construction

* Garbage Free Form

— Derived consequences

— Sketch of the construction

%

HTT [Engelfriet&Vogler 88]

Higher-order “single-input” “safe” tree transducer

Mult :: Tree A Tree
Mult (Pair(X4, x,)) C lter (x ,)(Add(x))(2)

lter :: Tree A (Tree A T[Iee) A Tree A Tree
lter (S(x))(f)(y) C lter (x)(N(f(y))
Iiter (Z)(f)(y) Cy

Add :: Tree A Tree VA Tree
Add(S(x))(y) C Add(x)(S(y))
Add(2)(y) Cy

HTT

e Set of mutually recursive functions

— Defined in terms of induction on a single input tree

* Input trees are always consumed, not newly constructed
* Output trees are always created, but not destructed

— Rest of the parameters are ordered by the order
* Multiple parameters of the same order is ok but in uncurried form

Inductive InputParam Order-1 Paran(s) OrderO Paran(s) Result

A —— A

lter . Tree A (Tree A Tree) A Tree A Tree

Iter (S(x))(M(y) C lter (x)(N((y))
iter (2)(N(y) Cy

HTT

Nondeterminism (2 and D)

Subseq :: Tree A Tree 5
Subseq(Cons(x, xs)) C Cong(x, Subseq(Xxs))

© Subseq(xs)
Subseq(Nil) C Nil
Subseq(Other) C 2

In this talk, evaluation strategy is unrestricted (= call-by-name).
But call-by-value can also be dealt with.

HTT

e Notation: Nn-HTT

— is the class of Tree A Tree functions
representable by HTTs of order n.

— {Subseq} is O-HTT, {Mult, Iter , Addre 2-HTT

Subseq :: Tree A Tree

Mult :: Tree A Tree
lter © Tree A (Tree A Tree) A Tree A Tree
Add :: Tree A Tree A Tree

Order-n to Order-1

THEOREM [EV88] [EV86]
(n-HTT) (1-HTT)"
n-th order tree transducer is representable

by a n-fold composition of 15t-order tree
transducers. (“=or R ?” is left open, as far as | know.)

[EV86] J.Engelfriet& H. Vogler, APushdown Machi nes fTCB42 M
[EV88]b,Ai Hi gh Level Tree Transducer s aAtinfl26 p

}u)

Proof: n-HTT = 1-HTT 2 (n-1)-HTT

ldea:
Represent 15t-order term TreeA Tree by a Tree.

F i Tree A TreeATree F Tree A Tree
F(2)(y) C S(S(y)) F(2) C S(S(Y))
Represent 1%t-order application symbolically, too.

A C Fx) 2) $ AC @FKX .Z)

Proof: n-HTT = 1-HTT 2 (n-1)-HTT

Represent 15t-order things symbolically.

F ree A Tree <
F2) € sstyy | A C @FK.Z)

Then a 1-HTT performs the actual “application”.

Eval (@f, b))(y) C Eval(f, Eval(b)(y))

Eval (Y)(y) Cy
Eval (S(x))(y) C S(kBval(x)(y))

Eval (2)(y) C 7

Mult (Pair(x,, x,))C @(ter (x)(Add(x ,)) ,Z2)

lter (S(x))(f)
lter (Z)(f)
Add(S(x))

Add(2)

C @fter () ,@(f,Y))
C Y
(Add(X) S(Y))

)¢)¢

Milt (Pair(S(2),S(2))

) @ Q)

e

[@]

2

| ter (S(Z))(Add(S(2))) @ @

— e .z

[@j @@ [] j lter (Z2)(Add(S(2))) [@

)

CD

[@ @ Add(S(2)) fﬂ

Add(S(2)) Example

Eval (@f, b))(y) C:: Eval (f, Eval (b)(y))

Eval (Y)(y) Cy
Eval (S(x))(y) C S(Eval (x)(y))
Eval (Z2)(y) C Z

Eval (|@:) Z

S
| @ v
Eval (| @) - o s

[@] ZJ Eval (@:) | Z z Z@
3 @ Eva (Y} Eval (@) z
iy @uoy Bk
Y DD s o s

))

Y Y Y

./ \— —

Why That Easy

* Relies on the ordered-by-order condition.

— No variable renaming is required! [Blum&Ong 09]

Eval ([Y} Eval (@) z
o (Y]
o =

[BOO9]W. Blumand GH.L.Ong 7 The Saf e Llav g8 &l

Now, Decomposed.

Next, Make Intermediate Trees Small.

1-HTT

A mﬁﬂgu ééUA-A A A

i

THEOREM [l. & Maneth 08] [I. 09]'* Improvement)

Ot .. .e1-HTT Yt e OLHT]T 1, ...,T /e 1-HTT
for any (T, %2 ...21)(s) | t, |
there exist T (s)l so, Tis) Siq, ISi] ISiq], S=t

AT

|s| = number of nodes
[IMO8] K. Inaba& S.Maneth i The complexity of t rRESEICS

[Inaba09] K.lnabg A Compl exi ty and Expr essi ven eDsssertatan

Consequences : Range Membership

/I\/Iembership problem for A
the class Range(IHTT") of languages is
in DLINSPACE
_ in NP Y

That is, given (T,% ... 2 T;) and t, we can determine

“Ws.(T,2...2T)(s) 1"

in O(f(|ty|+...+|t,|) |t|)spaceand
in O(g(|t|+...+[t,|) poly(|t|]))nondeterministic time.

Consequences : Range Membership

/I\/Iembership problem for A
the class Range(IHTT") of languages is
in DLINSPACE
_ in NP /

PROOF
Guess (in NP) or m . .

exhaustively try (in DLINSPACE)
all the intermediate trees: s ..

Then check Range()l s and T.(s)l S,
both turn out to be feasible in DLINSPACE n NP.

Consequences : Range Membership

/I\/Iembership problem for
the class Range(IHTT") of languages is

~

In DLINSPACE
[RE)
/ COROLLARY I | CSL (NLINSPACE) |

Higher-order safe recursion scheme, also

known as Ol-hierarchy, HO-PDA language,

Maslov hierarchy, generalized indexed
\/anguage, etc., is Context-Sensitive.)

order-n

Indexed (order-2)

[CFL (order-1)]
[Regular (order-0)]

Consequences : Linear-Size Inverse

\
Forall T.42..2T;€ 1-HTT", t€ Range(T. %...AT,)

there exists Ssuch that
. f(s)l t and |[s| < h(|t.2...2T,]) |t]

J

COROLLARY (by our constructive proof)
Right inverse of 1-HT T is computable in DLINSPACENNP.

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”

A/\®AE>:> A@A

How to Construct the “Garbage-Free” Form

Make each 1-HTT “productive”
by separating its “deleting” part

Ty)=t Ty]
A

How to Construct the “Garbage-Free” Form
Make each 1-HTT “productive”

by separating its “deleting” part,
and fuse the deleter to the left [en7s,771[Envoss][Enma02]

AT/\ h= EE

Repeat o RN SN EN
= RN EN T EN

use N N

LT) Tay LT,

split _— - .
\Tlu_[z}laidﬂ Tg JLTy

Fuse e N ¢ — ’\

Split L% L \Lp
FuseilJlZ?”Ad‘ Tz, T3, J,T ’\
Split | Typagg | Ty Ty LT,
- 1 (Ve -
[T_‘L;BAJ\ ! j__, ! 2’ 1 3, | 1 1

Key Part

Separate the “deleting” transformation

=l
/\:>A=/\:> A o A

Key Part

slogan: Work on every node

(T ,'must generate at least one node for each input node)

e L To
> A ® A

Work on Every Node K Visit All Nodes

Deleting HTTs

Gy) € 728 v, [}

F(S(ux) © Exy) | Ly
5 Flx,)
5 G F(X,)

may not recurse down to a subtree.

Work on Every Node K Visit All Nodes

At least one choice
of nodeterminism

“deletes correctly”.

F(S0ax2) € GOIFX) | T,

Nondeterministically delete every subtree! @ L }

Del(S(x4,Xx,)) C
S12(Del(x ,),Del(x,)) & S1_(Del(x ,))
o S 2(Del(x 5)) 9 S ()

—(S12(X4,X 5))
~(S1_(%y))
~(S_2(%5))

~(S_0))

C GrIF(X)
C Gxp(2)

C >
C D [T n’}

Work on Every Node K Work on Leaf

Erasing HTTs

F(S(x)) C GX)(2)
G2)(y) C vy

may be idle at leaves.

Work on Every Node K Work on Leaf

Erasing HTTs

F(S(x)) C GX)(2)
G2)(y) C vy

Inline Expansion F(S(2)) C Z [! n,}

Work on Every Node
K Work on Monadic Nodes

Skipping HTTs

F(SOOMNY 1Y 2. 3) € FOOY .Y .Y 1)
F(2) (YuY 2Y 3) C Done(yy 2y 3)

are good at juggling.

Work on Every Node
K Work on Monadic Nodes

Skipping HTTs

F(S(X))Y 1.V 5.V 3) C_ F(X)(y 2.Y 3.Y 1)

F(2) (YwY 2:Y 3)

Nondeterministic deletion again.

C Done(y,y 2y 3)

Remember how argugments would’ve been shuffled. v

~(Z123) (Y1.Y 2 3)
F(Z2231)(Y1y 2y 3)
F(Z312)(Y1y 2Y 3)

O O3 O

Done(yqy 2y 3)
Done(ysy a3y 1)

Done(ysy 1,y 2)[T ,}
N

Simple Arithmetic

Input size = #leaf +#monadic + #others

— For each leaf on the input, generate 1 node.
— For each monadic node, generate 1 node.

— Thus, #leaf + #monadic Output size

For any tree, #others < #leaf Output size

Add: #leaf + #monadic+ #others

So, Input size < Output Size* 2

Output size+2

Work on Nodes with Rank-2,3,...

 Input size < Output Size* 2

=1 (Bin(xq, X))(y) € Fr(x)(Fr(x ,)(y))
Fr(Ay) € Aly)
-r(B)(y) C Bl(y)

This bound is sufficient for deriving the results,
but we can improve this to Input size Output Size
by deterministic deletion of leaves + inline expansion.

e L To
/\:> Ao A

Summary

* Order-n HTT A (Order-1 HTT)"
* Garbage Free Form

— L(Safe-HORS) is context-sensitive.

e Future Direction @

— Extend it to Unsafe HTT
— Or, use it for proving

safe R unsafe

