Compact Representation
for Answer Sets
of n-ary Regular Queries

N NN
ki dh XA
ZoV TN]

by Kazuhiro Inaba (National Institute of Informatics, Japan)
and Hauro Hosoya (The University of Tokyo)

CIAA 2009, Sydney

BACKGROUND
N-ary Query over Trees

D

e ... IS a function that
— Takes a tree ¢ as an input, and
— Returns some set of n-tuples of nodes of ¢

o Examples:
— 1-ary: “select the leftmost leaf node”

— 2-ary: “select all pairs (x,)) s.t. xis taken
from the left subtree of the root,
and yis from the right”

— 0-ary: "“is the number of leaves odd?”

BACKGROUND

N-ary Regular Queries over Trees

D

» Query definable by a tree automaton

e Reqgular
— iff defina
— iff defina
— iff defina
— iff defina

O O O O
@ ® d @

by Monadic 2"-Order Logic
oy Modal p-Calculus
by Monadic Datalog

oy Boolean Attribute Grammar

BACKGROUND
Efficiency of Regular Queries

4R

e Given a query g (represnted by an
automaton), and an input tree t,

we can compute q(t) in...

«O(|a]-(1t]+]q(t)])) time
[Flum & Frick & Grohe 2002]
— (In some sense) optimal

“Optimal”, but...

4R

-0<m\-(\t|+|C|(t)|>)

— ~|t|" for n-ary queries in the worst case

» In some applications, we do not need
the concrete list of all the answers

— At least, don't need to list up them all at
the same time

Input

Tree
size: IN

Data structure Get-Size: O(min(I,0))

“projection”: O(H-
size: O(mIn(IN,0UT)) oiection 9(li-a)

“Selection”: O(H)

Outline

D

@

2 Application
— When Do We Need Compact Representation?
3 Algorithm
— Query Algorithm (Suitable for "SRED"” Repr.)
—“"SRED" Data Structure

@) Conclusion

APPLICATION
(IN XML TRANSLATION)

"Relative” Queries in XML

<list>
{foreach x s.t. ¢(X):
<item>{x}</1tem>
<sublist>
{foreach y s.t. v(x,y):
<item>{yl}</i1tem>}

</sublist>}

</list>

o Select y relative to x

— In many cases, # of y for each x is constant. E.g.,
“select the child labeled <name>", “select next <h2>"

Two Evaluation Stategies

f\

</sublist>}
</1ist>

"4

<list>
{foreach x s.t. ¢(x):
<item>{x}</1item>
<sublist>

{foreach y s.t. ¥v(x,y):
<item>{y}</item>}

N

A := the answer set of
1-ary query {x | ®(x)}

for each x in A:
B := the answer set of

1-ary query {y | W(x,y)}
for each y in B:

print <item>y</item> 7

A := the answer set of
1-ary query {x | ®(x)}
C := the answer set of
2-ary query {(x,y) |
O(x)&W(x,y)}
for each x in A:
B:={y | (xy)€C} = Cy.,
for each y in B:

print <item>y</item>; 7

O(|t]?) time
in “common” cases
(= many X, constant y)

P

O(]t]) time
in “common” cases

A := the answer set of
1-ary query {x | ®(x)}

for each x in A:
B := the answer set of
1-ary query {y | W(x,y)}
for each y in B:

print <item>y</item> ,

A := the answer set of
1-ary query {x | ®(x)}
C := the answer set of
2-ary query {(x,y) |
O(x)&W(x,y)}
for each x in A:
B:={y | (xy)€C} =C;.,
for each y in B:

print <item>y</item>; r

O(|t]?) time
in “common” cases
(= many X, constant y)

O(]t|?) time
O(|t]) space

in “worst” cases

(= many x, many y)

O(]t]) time
in “common” cases

O(]t]2) time
O(]t|2) space
in “worst” cases

\ 4

A := the answer set of
1-ary query {x | ®(x)}

for each x in A:
B := the answer set of
1-ary query {y | W(x,y)}
for each y in B:

print <item>y</item> ,

A := the answer set of
1-ary query {x | ®(x)}
C := the answer set of
2-ary query {(x,y) |
O(x)&W(x,y)}
for each x in A:
B:={y | (xy)€C} =C;.,
for each y in B:

print <item>y</item>; r

O(|t|?) time
in “common” cases
(= many x, constant y)

O(|t|2) time
O(|t|) space

in “worst” cases

(= many x, many y)

O(]t]) time
in “common” cases

O(]t]2) time
O(]t]2) space
in “worst” cases

l}';tbganmmr set of
If We Use “"SRED"”

to Represent the Set C ...!!
O(|t]) time
in “common” cases

O(|t]|?) time O(|t|) space

~

>

in “worst” cases

4

A := the answer set of

C := the answer set of

\\ for each x in A:

1-ary query {x | ®(x)}

2-ary query {(x,y) |
O(x)&W(x,y)}

B:={y | (xy)€C} =C.
for each y in B:

print <item>y</item>; r

IMPLEMENTATION
OF REGULAR QUERIES
USING “SRED”

(Bottom-up Deterministic)
Tree Automaton

D

(For simplicity, we limit our attention to binary trees)
* A= (ZOI z2/ QI FI 6)

— 2, : finite set of leaf labels

— 2, : finite set of internal-node labels

—Q : finite set of states

— 0 : transition function

(2p U 2,xQ%XQ)>Q
—F € Q : accepting states

‘Example (0-ary): ODDLEAVES

* Q=A{qy g1}, F={qy}

* o(L) = q,
* 0(B, gg, qp) = C
* 0(B, gy, q1) = C
* 0(B, 1, Gg) = C
» 0(B, g1, Gy) = C

O = = O

Tree Automaton for Querying

D

e For any n-ary regular query ® on trees
over 2, U 2,,

» There exists a BDTA /4 0n trees over
2o, % B", 2, xB" (where B={0,1}) s.t.
- (VyV,) € O(t)

- iff
— Ay accepts the tree mark(t,vy,...,v,)

mark(t,...) = t with the i-th B component is
1 at vi and 0 at other nodes

'Example (1-ary): LEFTMOST

B,
+Q = {q a.}, F={q;} 4 o
+ 5(L0) = g
+ 8(L1) = q

¢ 6(BOI q]_l qO) = ql
o O(otherwise) = o

D

NA: Naive n-ary Query Algorithm

» For each tuple (v4,..,v,) €Node(t)"
— Generate mark(t, vy, ..., V)

—Run 44 0n it
If accepted, then (vy,...,v,,) is one of the answer

e Run 440n t O(|t|") times = O(|t|"*1)

OA: One-Pass Algorithm

D

o For each combination of
nodev, stateq, and b, ..., b, € B
— Compute the set
r, (g, by,, b)) & (Node(t)U{L})" s.t.
- (Vyy ey V,) € 1,(q, by, ..., D)
iff

(Vi : “descendant v; of v is marked and
b=1" or “"vi=1 and b,=0") = “automaton
assigns g at node v”

'Example (2-ary): LEFT&RIGHT

B
* Q =14dy 91, dyy 3, 945, F={0q3}
(L) (B,
® B(LOO) — 6(810, Co, Co) - CO G G

o 6('.10) — 6(810, Co, Co) = U4
o 6('.01) = 6(801, Co, Co) = Cz
¢ 6(BOOI q]_l q2) = C3

¢ 6(8001 qu ql) T 6(8001 di/ qO) = ((for i=1,2)
* O(otherwise) = Q4

o(L00) = o(B10, g, dp) = dy
o(L10) = o(B10, qq, qo) = q;
o(L01) = o(B01, qq, qp) = a5
0(B00, q;, 9,) = a3
o(B00, gy, 9;) = G,

o(L00) = o(B10, g, dp) = dy
o(L10) = o(B10, qq, qo) = q;
o(L01) = o(B01, qq, qp) = a5
0(B00, q;, 9,) = a3
o(B00, gy, 9) = G,

r2(do, 00) ={(L,L1)}
r(qy, 10) ={(v2,1) }
ra(dy, 01) = { (L,v2) }
ro(ds, 11) = { (v2,v2) }
s O=0

Fyar Tys
similar to I,

o(L00) = o(B10, g, dp) = dy
o(L10) = o(B10, qq, qo) = q;
o(L01) = o(B01, qq, qp) = a5
0(B00, g3, 9;) = g3

o(B00, gy, 9) = G, :
ado 00) = { (L, 1)} |
ro(dy, 10) ={(v2, 1) }

r(dy, 01) = { (L ,v2) }
ro(ds, 11) = { (v2,v2) }

r.v3(CIOI OO) \k
= r4(qo,00)*{(L, L)}*r,s5(q0,00)
={(L,1)}

o =8

Fyar Tys
similar to I,

r'v3(C|3I 11)

= 1,4(q1,00)*{(L,L)}*r,s(q,11)

U r,(d3,01)*{(L, L)}*r,s(9,10)

U 14(93,10)*{(L, 1)}*r,5(q,,01)
(= {(v4, L) (L, L)F(L,v5)}

U r4(qy, 11)X{ (L, 1)}*r5(q,,01)

= {(v4,v5)}

r-V3(C|21 01)

= Iy4(qo,00)*{(L,v3)}*r,5(q,,00)
U 1y4(do,00)*{(L, L)}*r,s(q,,01)
U ry4(d,,01)*{(L,L)}*r,s(q,,00)

= {(L,v3), (L ,v4), (J-,V5)}/

Example (2-ary): LEFT&RIGHT

e Q ={do, 9y, 9y 93, A4, F={0qs}
o Eventually...

(£ (a5, 11) = {(v2,v3), (v2,v4), (v2,v5)} J

Time Complexity of OA: O(|t|"+1)

D

e One-pass traversal: |[t]

e For each node,
—|Q| x 2" entries of r are filled
—Need O(]QJ|2 -3") U and * operations

— Each operand set of U and * may be as

large as O([t|")
- each operation takes O(|t|") time in the

worst case, as long as the “set”s are
represented by usual data structure (lists, rb-

trees,...)

Time Complexity of OA: O(|t|"+1)

4R

e One-pass traversal: |[t]
e For each node Constant wrt | t]!

|Q| x 2" entries of r are filled
Need O(]|Q|2 -3") U and * operations

— Each operand set of U and * may be as
large as O([t|")

akgs O(|t|") time in the
o1y as the “set’s are
usual data structure (lists, rb-

What happens if we have
a set representation with
O(1) operations??

Time Complexity of OA: O(|t|"*!)

4R
\J

e One-pass traversal: |[t]
o For each node Constant wrt | t]!

|Q| x 2" entries of r are filled
Need O(]|Q|2 -3") U and * operations

— Each operand set of U and * may be as
large as O([t|")

jontakgs O(|t|") time in th
What happens if we have =~ = th(| ") time in the
a set representgtlon with cual datd O(Jt|) Time
O(1) operations?? Ouering

Il Qur Main Idea !!

o SRED:

Set Representation by Expression Dags
— Set is Repr'd by a Symbolic Expression Producing it

D

L

Instead of We Use X \
{(v2,v3), (v2,v4), (V2,v5)} / <

G Vi / {(v2,L1)} — U —_

U 1(L,v3)}
/ \

(L3, (Lvs NS C LRI S

'BNF for SRED (Simplified)

e SET ::=
— Empty -4}
— Unit —{(L,.., L)
— NESET

e NESET ::=

— Singleton(ELEMENT)
— DisjointUnion(NESET, NESET)
— Product(NESET, NESET)

Properties of SRED

Input

Tree
size: IN
height: H

Because, U
and * are
almost trivially
in O(1)

O(IN) time =
O(IN) space

Output Tuples

Properties of SRED

Input

Tree Thanks to
size: IN empty-set
height: H elimination

Because, U
and * are
almost trivially
in O(1)

(m.in(IN,OU)

Thanks to
empty-set
elimination

O(IN) time =
O(IN) space

Properties of SRED

Input

Tree Thanks to
size: IN empty-set
height: H elimination

Very Easy
to Derive

|
: Get-Size: O(min(I1,0))
- ' |
O(min(IN,0UT)) p 5cction”: o(li-a)
l

“Selection”: O(H)

Because, U
and * are
almost trivially
in O(1)

Thanks to
empty-set
elimination

O(IN) time =
O(IN) space

O(OUT) Enumeration of SRED

(or, “decompression”)

4R

— €Vd
— €vVd
— €Vd
— €Vd
— €Vd

o Simple Recursion is Enough!
(assumption: U is O(1), * is O(out))

(Empty) =

(Unit) =Ll iy}
(Singleton(e)) = {e}
(DisjointUnion(s,,s,)) = eval(s;) U eval(s,)
(Product(s,s,)) = eval(s,) * eval(s,)

e (NOTE: A bit more clever impl. enables
O(OUT) time & O(1) working space)

D

For Advanced Operations...

» Actually we add a little more
information on each SRED node

L \\Typell

We Use *

11 v, <~
/ U

1(v2, 1)} B

—“Origin”

2% U 7 (L v3)
Olv Olv
/ 3 3
{(L,v4)} {(L,v5)

K Olv, 01vg

~

¥

D)

“Selection” on SRED

4R

® Spiv = {(Vy,ee/Viit,Vis 1, Vn) |
(Ve Vg - V- Vi Vs - €51
— Again, Simple Recursion!
N (SUT) [i:v] = S[i:v] U T[i:v]
_ (Stl,ul * th'vz)[i:v] — S[i:v] T ifietl
=S* Ty IfiE€t2
— Sturi:v] = {} if v is not a descendant of u

o Other operations are also easy as long
as they interact well withU and *

D

Comparison

e H. Meuss, K. U. Schulz, and F. Bry, "Towards Aggregated Answers
for Semistructured Data”, ICDT 2001

— Limited Expressiveness < Regular

e @G. Bagan, "MSO Queries on Tree Decomposable Structures Are
Computable with Linear Delay”, CSL 2006

— “Enumeration” only

« B. Courcelle, “Linear Delay Enumeration and Monadic Second-
Order Logic”, to appear in Discrete Applied Mathematics, 2009

— “Enumeration” only

— His "AND-OR-DAG" is quite similar to SRED (say, “*-U-DAG"),
but no clear set-theoretic meaning is assigned; hence it is not
at all straightforward to derive other operations like selection

