
Compact Representation
for Answer Sets
of n-ary Regular Queries

by Kazuhiro Inaba (National Institute of Informatics, Japan)

and Hauro Hosoya (The University of Tokyo)

CIAA 2009, Sydney

BACKGROUND

N-ary Query over Trees

• … is a function that

– Takes a tree t as an input, and

– Returns some set of n-tuples of nodes of t

• Examples:

– 1-ary: “select the leftmost leaf node”

– 2-ary: “select all pairs (x,y) s.t. x is taken
from the left subtree of the root,
and y is from the right”

– 0-ary: “is the number of leaves odd?”

BACKGROUND

N-ary Regular Queries over Trees

• Query definable by a tree automaton

• Regular

– iff definable by Monadic 2nd-Order Logic

– iff definable by Modal μ-Calculus

– iff definable by Monadic Datalog

– iff definable by Boolean Attribute Grammar

– …

BACKGROUND

Efficiency of Regular Queries

• Given a query q (represnted by an
automaton A), and an input tree t,

we can compute q(t) in…

• O(|A|・(|t|+|q(t)|)) time

[Flum & Frick & Grohe 2002]

– (In some sense) optimal

“Optimal”, but…

• O(|A |・(|t| + |q(t)|))

– ～|t|n for n-ary queries in the worst case

• In some applications, we do not need
the concrete list of all the answers

– At least, don’t need to list up them all at
the same time

Still Big

Input
Tree

size: IN
height: H

Run Query

O(IN + OUT)

Set of
Output Tuples

size: OUT∈O(INn)

“SRED”
Data structure

size: O(min(IN,OUT))
“Projection”: O(H・α)

isMember: O(H)

“Selection”: O(H)

Get-Size: O(min(I,O))

Today’s Topic

Outline

① Introduction

– N-ary Regular Queries & Their Complexity

② Application

– When Do We Need Compact Representation?

③ Algorithm

– Query Algorithm (Suitable for “SRED” Repr.)

– “SRED” Data Structure

④ Conclusion

APPLICATION
(IN XML TRANSLATION)

“Relative” Queries in XML

• Select y relative to x

– In many cases, # of y for each x is constant. E.g.,

• “select the child labeled <name>”, “select next <h2>”

<list>
{foreach x s.t. φ(x):

<item>{x}</item>
<sublist>
{foreach y s.t. ψ(x,y):

<item>{y}</item>}
</sublist>}

</list>

Two Evaluation Stategies

A := the answer set of
1-ary query {x | Φ(x)}

for each x in A:
B := the answer set of

1-ary query {y | Ψ(x,y)}
for each y in B:

print <item>y</item>

A := the answer set of
1-ary query {x | Φ(x)}

C := the answer set of
2-ary query {(x,y) |

Φ(x)&Ψ(x,y)}
for each x in A:

B := {y | (x,y)∈C} = C[1:x]

for each y in B:
print <item>y</item>;

<list>
{foreach x s.t. φ(x):

<item>{x}</item>
<sublist>
{foreach y s.t. ψ(x,y):

<item>{y}</item>}
</sublist>}

</list>

Two Evaluation Stategies

A := the answer set of
1-ary query {x | Φ(x)}

for each x in A:
B := the answer set of

1-ary query {y | Ψ(x,y)}
for each y in B:

print <item>y</item>

A := the answer set of
1-ary query {x | Φ(x)}

C := the answer set of
2-ary query {(x,y) |

Φ(x)&Ψ(x,y)}
for each x in A:

B := {y | (x,y)∈C} = C[1:x]

for each y in B:
print <item>y</item>;

O(|t|2) time
in “common” cases

(= many x, constant y)

O(|t|) time
in “common” cases

Two Evaluation Stategies

A := the answer set of
1-ary query {x | Φ(x)}

for each x in A:
B := the answer set of

1-ary query {y | Ψ(x,y)}
for each y in B:

print <item>y</item>

A := the answer set of
1-ary query {x | Φ(x)}

C := the answer set of
2-ary query {(x,y) |

Φ(x)&Ψ(x,y)}
for each x in A:

B := {y | (x,y)∈C} = C[1:x]

for each y in B:
print <item>y</item>;

O(|t|2) time
in “common” cases

(= many x, constant y)

O(|t|) time
in “common” cases

O(|t|2) time
O(|t|) space

in “worst” cases
(= many x, many y)

O(|t|2) time
O(|t|2) space

in “worst” cases

Two Evaluation Stategies

A := the answer set of
1-ary query {x | Φ(x)}

for each x in A:
B := the answer set of

1-ary query {y | Ψ(x,y)}
for each y in B:

print <item>y</item>

A := the answer set of
1-ary query {x | Φ(x)}

C := the answer set of
2-ary query {(x,y) |

Φ(x)&Ψ(x,y)}
for each x in A:

B := {y | (x,y)∈C} = C[1:x]

for each y in B:
print <item>y</item>;

O(|t|2) time
in “common” cases

(= many x, constant y)

O(|t|) time
in “common” cases

O(|t|2) time
O(|t|) space

in “worst” cases
(= many x, many y)

O(|t|2) time
O(|t|2) space

in “worst” cases

If We Use “SRED”
to Represent the Set C …!!

O(|t|) time
in “common” cases

O(|t|2) time O(|t|) space
in “worst” cases

IMPLEMENTATION
OF REGULAR QUERIES
USING “SRED”

(Bottom-up Deterministic)

Tree Automaton

(For simplicity, we limit our attention to binary trees)

• A = (Σ0, Σ2, Q, F, δ)

– Σ0 : finite set of leaf labels

– Σ2 : finite set of internal-node labels

– Q : finite set of states

– δ : transition function
(Σ0 ∪ Σ2×Q×Q)  Q

– F ⊆ Q : accepting states

Example (0-ary): ODDLEAVES

• Q = {q0, q1}, F={q1}

• δ(L) = q1

• δ(B, q0, q0) = q0

• δ(B, q0, q1) = q1

• δ(B, q1, q0) = q1

• δ(B, q1, q1) = q0

B

L B

L L

q1

q1 q0

q1
q1

Tree Automaton for Querying

• For any n-ary regular query Φ on trees
over Σ0 ∪ Σ2,

• There exists a BDTA AΦ on trees over

Σ0×Bn, Σ2×Bn (where B={0,1}) s.t.

– (v1,…,vn) ∈ Φ(t)

– iff

– AΦ accepts the tree mark(t,v1,…,vn)

• mark(t,…) = t with the i-th B component is
1 at vi and 0 at other nodes

Example (1-ary): LEFTMOST

• Q = {q0, q1}, F={q1}

• δ(L0) = q0

• δ(L1) = q1

• δ(B0, q1, q0) = q1

• δ(otherwise) = q0

q1

q1

q0

q0

B

L B

L L

B0

L1 B0

L0 L0q0

q0

q0

q1

B0

L0 B0

L1 L0q1 q0

NA: Naïve n-ary Query Algorithm

• For each tuple (v1,..,vn) ∈Node(t)n

– Generate mark(t, v1, …, vn)

– Run AΦ on it

• If accepted, then (v1,…,vn) is one of the answer

• Run AΦ on t O(|t|n) times = O(|t|n+1)

OA: One-Pass Algorithm

• For each combination of
node v, state q, and b1, …, bn ∈ B

– Compute the set
rv (q, b1, …., bn) ⊆ (Node(t)∪{⊥})n s.t.

– (v1, …, vn) ∈ rv (q, b1, …., bn)

iff
(∀i : “descendant vi of v is marked and
bi=1” or “vi=⊥ and bi=0”) ⇒ “automaton
assigns q at node v”

Example (2-ary): LEFT&RIGHT

• Q = {q0, q1, q2, q3, q4}, F={q3}

• δ(L00) = δ(B10, q0, q0) = q0

• δ(L10) = δ(B10, q0, q0) = q1

• δ(L01) = δ(B01, q0, q0) = q2

• δ(B00, q1, q2) = q3

• δ(B00, q0, qi) = δ(B00, qi, q0) = qi (for i=1,2)

• δ(otherwise) = q4

B

L B

L L

B

L B

L L

←v1

δ(L00) = δ(B10, q0, q0) = q0

δ(L10) = δ(B10, q0, q0) = q1

δ(L01) = δ(B01, q0, q0) = q2

δ(B00, q1, q2) = q3

δ(B00, q0, q2) = q2 …

←v2 ←v3

←v4 ←v5

B

L B

L L

←v1

δ(L00) = δ(B10, q0, q0) = q0

δ(L10) = δ(B10, q0, q0) = q1

δ(L01) = δ(B01, q0, q0) = q2

δ(B00, q1, q2) = q3

δ(B00, q0, q2) = q2 …

rv2(q0, 00) = { (⊥,⊥) }
rv2(q1, 10) = { (v2,⊥) }
rv2(q2, 01) = { (⊥,v2) }
rv2(q4, 11) = { (v2,v2) }
rv2(_, _) = {}

←v2 ←v3

←v4 ←v5
rv4, rv5 :

similar to rv2

B

L B

L L

←v1

δ(L00) = δ(B10, q0, q0) = q0

δ(L10) = δ(B10, q0, q0) = q1

δ(L01) = δ(B01, q0, q0) = q2

δ(B00, q1, q2) = q3

δ(B00, q0, q2) = q2 …

rv2(q0, 00) = { (⊥,⊥) }
rv2(q1, 10) = { (v2,⊥) }
rv2(q2, 01) = { (⊥,v2) }
rv2(q4, 11) = { (v2,v2) }
rv2(_, _) = {}

←v2 ←v3

←v4 ←v5
rv4, rv5 :

similar to rv2

rv3(q0, 00)
= rv4(q0,00)*{(⊥,⊥)}*rv5(q0,00)
= {(⊥,⊥)}

rv3(q3, 11)
= rv4(q1,00)*{(⊥,⊥)}*rv5(q2,11)
∪ rv4(q1,01)*{(⊥,⊥)}*rv5(q2,10)
∪ rv4(q1,10)*{(⊥,⊥)}*rv5(q2,01)

(= {(v4,⊥)}*{(⊥,⊥)}*{(⊥,v5)}

∪ rv4(q1,11)*{(⊥,⊥)}*rv5(q2,01)
= {(v4,v5)}

rv3(q2, 01)
= rv4(q0,00)*{(⊥,v3)}*rv5(q0,00)
∪ rv4(q0,00)*{(⊥,⊥)}*rv5(q2,01)
∪ rv4(q2,01)*{(⊥,⊥)}*rv5(q2,00)
= {(⊥,v3), (⊥,v4), (⊥,v5)}

…

Example (2-ary): LEFT&RIGHT

• Q = {q0, q1, q2, q3, q4}, F={q3}

• Eventually…

rv1(q3, 11) = {(v2,v3), (v2,v4), (v2,v5)}
…

B

L B

L L

←v1

←v2 ←v3

←v4 ←v5

Time Complexity of OA: O(|t|n+1)

• One-pass traversal: |t|

• For each node,

– |Q|×2n entries of r are filled

– Need O(|Q|2 ・3n) ∪ and * operations

– Each operand set of ∪ and * may be as
large as O(|t|n)

•  each operation takes O(|t|n) time in the

worst case, as long as the “set”s are
represented by usual data structure (lists, rb-
trees,…)

Time Complexity of OA: O(|t|n+1)

• One-pass traversal: |t|

• For each node,

– |Q|×2n entries of r are filled

– Need O(|Q|2 ・3n) ∪ and * operations

– Each operand set of ∪ and * may be as
large as O(|t|n)

•  each operation takes O(|t|n) time in the

worst case, as long as the “set”s are
represented by usual data structure (lists, rb-
trees,…)

Constant wrt |t|!

What happens if we have
a set representation with

O(1) operations??

Time Complexity of OA: O(|t|n+1)

• One-pass traversal: |t|

• For each node,

– |Q|×2n entries of r are filled

– Need O(|Q|2 ・3n) ∪ and * operations

– Each operand set of ∪ and * may be as
large as O(|t|n)

•  each operation takes O(|t|n) time in the

worst case, as long as the “set”s are
represented by usual data structure (lists, rb-
trees,…)

Constant wrt |t|!

What happens if we have
a set representation with

O(1) operations??
O(|t|) Time
Quering!

!! Our Main Idea !!

• SRED:
Set Representation by Expression Dags
– Set is Repr’d by a Symbolic Expression Producing it

B

L B

L L

←v1

←v2
←v3

←v4
←v5

Instead of
{(v2,v3), (v2,v4), (v2,v5)}

We Use *

{(v2,⊥)}

∪

{(⊥,v4)} {(⊥,v5)}

∪
{(⊥,v3)}

BNF for SRED (Simplified)

• SET ::=

– Empty -- {}

– Unit -- {(⊥,…,⊥)}

– NESET

• NESET ::=

– Singleton(ELEMENT)

– DisjointUnion(NESET, NESET)

– Product(NESET, NESET)

Input
Tree

size: IN
height: H

Set of
Output Tuples

size: OUT∈O(INn)

“SRED”
Data Structure

Properties of SRED

Because, ∪
and * are

almost trivially
in O(1)

Size:
O(min(IN,

O(IN) time 
O(IN) space

Input
Tree

size: IN
height: H

Set of
Output Tuples

size: OUT∈O(INn)

“SRED”
Data Structure

Properties of SRED

Because, ∪
and * are

almost trivially
in O(1)

Size:
O(min(IN,

O(IN) time 
O(IN) space

OUT))

Thanks to
empty-set
elimination

Thanks to
empty-set
elimination

Input
Tree

size: IN
height: H

Set of
Output Tuples

size: OUT∈O(INn)

“SRED”
Data Structure

Properties of SRED

“Projection”: O(H・α)

isMember: O(H)

“Selection”: O(H)

Get-Size: O(min(I,O))Because, ∪
and * are

almost trivially
in O(1)

Size:
O(min(IN,

O(IN) time 
O(IN) space

OUT))

Thanks to
empty-set
elimination

Thanks to
empty-set
elimination

Very Easy
to Derive

O(OUT) Enumeration of SRED
(or, “decompression”)

• Simple Recursion is Enough!
(assumption: ∪ is O(1), * is O(out))

– eval(Empty) = {}

– eval(Unit) = {(⊥,…,⊥)}

– eval(Singleton(e)) = {e}

– eval(DisjointUnion(s1,s2)) = eval(s1) ∪ eval(s2)

– eval(Product(s1,s2)) = eval(s1) * eval(s2)

• (NOTE: A bit more clever impl. enables
O(OUT) time & O(1) working space)

For Advanced Operations…

• Actually we add a little more
information on each SRED node

– “Type”

– “Origin”
We Use *

{(v2,⊥)}

∪

{(⊥,v4)} {(⊥,v5)}

∪

{(⊥,v3)}

B

L B

L L

←v1

←v2
←v3

←v4
←v5

11 v1

10 v2

01 v3

01 v3

01 v3

01 v4 01 v5

“Selection” on SRED

• S[i:v] = {(v1,…,vi-1,vi+1,…,vn) |
(v1,…,vi-1, v, vi+1,…,vn) ∈S}

– Again, Simple Recursion!

– (S∪T) [i:v] = S[i:v] ∪ T[i:v]

– (St1,u1 * Tt2,v2)[i:v] = S[i:v] * T if i∈t1
= S * T[i:v] if i∈t2

– St,u[i:v] = {} if v is not a descendant of u

• Other operations are also easy as long
as they interact well with∪ and *

def

Comparison

• H. Meuss, K. U. Schulz, and F. Bry, “Towards Aggregated Answers
for Semistructured Data”, ICDT 2001

– Limited Expressiveness < Regular

• G. Bagan, “MSO Queries on Tree Decomposable Structures Are
Computable with Linear Delay”, CSL 2006

– “Enumeration” only

• B. Courcelle, “Linear Delay Enumeration and Monadic Second-
Order Logic”, to appear in Discrete Applied Mathematics, 2009

– “Enumeration” only

– His “AND-OR-DAG” is quite similar to SRED (say, “*-∪-DAG”),
but no clear set-theoretic meaning is assigned; hence it is not
at all straightforward to derive other operations like selection

