Differences From Artifact [d49aef5cfc6580a0]:
- File
lib/numeric/modArith.cpp
- 2015-08-22 04:50:02 - part of checkin [cc4202a4a6] on branch trunk - 663 (user: kinaba) [annotate]
To Artifact [a7ea12621faece16]:
- File
lib/numeric/modArith.cpp
- 2019-07-06 17:21:31 - part of checkin [efadb95ceb] on branch trunk - modArith: S(n,k) (user: kinaba) [annotate]
49 // O(log MODVAL), MODVAL must be prime: k^b + k^b+1 + ... + k^e 49 // O(log MODVAL), MODVAL must be prime: k^b + k^b+1 + ... + k^e
50 mint GSS(mint k, LL b, LL e) 50 mint GSS(mint k, LL b, LL e)
51 { 51 {
52 if( b > e ) return 0; 52 if( b > e ) return 0;
53 if( k.val <= 1 ) return k*(e-b+1); 53 if( k.val <= 1 ) return k*(e-b+1);
54 return (POW(k, e+1) - POW(k,b)) / (k-1); 54 return (POW(k, e+1) - POW(k,b)) / (k-1);
55 } 55 }
> 56
> 57 // https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
> 58 // Number of ways to split |n| labelled objects to exactly |k| unlabbled sets.
> 59 // * If we drop "exactly", the answer was k^n
> 60 // * If we split to "labeled" sets, the answer will be S(n,k)*k!
> 61 // * If unlabeled/unlabeld bar-and-ball-arranging argument.
> 62 vector< vector<mint> > SP_;
> 63 mint S(int n, int k) {
> 64 while (SP_.size() <= n) {
> 65 int nn = SP_.size();
> 66 SP_.push_back(vector<mint>(nn + 1, 1));
> 67 for (int kk = 2; kk<nn; ++kk)
> 68 SP_[nn][kk] = SP_[nn - 1][kk - 1] + kk*SP_[nn - 1][kk];
> 69 }
> 70 return k<=0 || n<k ? 0 : SP_[n][k];
> 71 }