Differences From Artifact [fc13d82ca1ace550]:
- File
SRM/491/1C.cpp
- 2011-02-23 09:21:16 - part of checkin [4fd800b3a8] on branch trunk - Copied from private svn repository. (user: kinaba) [annotate]
To Artifact [4e3a76b4d8344d4d]:
- File
SRM/491/1C.cpp
- 2012-04-03 13:55:54 - part of checkin [524cc07867] on branch trunk - Updated min cost flow library reading tsukuno's diary. (user: kinaba) [annotate]
58 58 {
59 59 const int N=idgen.size(), S=idgen.v2id(s_), T=idgen.v2id(t_);
60 60 static const Cost COST_INF = 1e+300; // !!EDIT HERE!!
61 61 static const Flow FLOW_INF = 0x7fffffff;
62 62
63 63 Cost total_cost = 0;
64 64 Flow total_flow = 0;
65 - vector<Cost> h(N, 0); // potential
66 - for(Flow RF=FLOW_INF; RF>0; ) // residual flow
65 + vector<Cost> dist(N, 0); // Distance from S : initially unknown.
66 + for(;;)
67 67 {
68 - // Dijkstra -- find the min-cost path
69 - vector<Cost> d(N, COST_INF); d[S] = 0;
68 + // Dijkstra : find the "shortest path" from S to T wrt C[][].
69 + // C[][] can be <0 so we must be careful. Instead of computing the shortest path directly,
70 + // we compute the increase ("delta") from the shortest path in the previous iteration.
71 + // Since shortest path cannot decrease, delta is always >=0 when traversing edges.
72 + // Smallest delta implies smallest dist[T]+delta[T].
73 + vector<Cost> delta(N, COST_INF); delta[S] = 0;
70 74 vector<int> prev(N, -1);
71 75
72 - typedef pair< Cost, pair<int,int> > cedge;
76 + typedef pair< Cost, pair<int, int> > cedge;
73 77 priority_queue< cedge, vector<cedge>, greater<cedge> > Q;
74 - Q.push( cedge(0, make_pair(S,S)) );
78 + Q.push( cedge(0, make_pair(S, S)) );
75 79 while( !Q.empty() ) {
76 - cedge e = Q.top(); Q.pop();
77 - if( prev[e.second.second] >= 0 )
80 + const cedge e = Q.top(); Q.pop();
81 + const int u_prev = e.second.first;
82 + const int u = e.second.second;
83 + if( prev[u] >= 0 ) // visited
78 84 continue;
79 - prev[e.second.second] = e.second.first;
85 + prev[u] = u_prev;
80 86
81 - int u = e.second.second;
82 87 for(int i=0; i<G[u].size(); ++i) {
83 - int v = G[u][i];
84 - Cost r_cost = C[u][v] + h[u] - h[v];
85 - if( F[u][v] > 0 && d[v] > d[u]+r_cost )
86 - Q.push( cedge(d[v]=d[u]+r_cost, make_pair(u,v)) );
88 + const int v = G[u][i];
89 + const Cost v_delta = dist[u]+delta[u]+C[u][v] - dist[v];
90 + if( F[u][v]>0 && delta[v]>v_delta )
91 + Q.push( cedge(delta[v]=v_delta, make_pair(u,v)) );
87 92 }
88 93 }
89 94
95 + // If T is unreachable, finished.
90 96 if( prev[T] < 0 )
91 - break; // Finished
97 + break;
98 +
99 + // Update the distance table.
100 + for(int u=0; u<N; ++u)
101 + if( delta[u] != COST_INF )
102 + dist[u] += delta[u];
92 103
93 - // Run the flow as much as possible
94 - Flow f = RF;
104 + // How much water can flow on the min-cost path?
105 + Flow f = FLOW_INF;
95 106 for(int u=T; u!=S; u=prev[u])
96 107 f = min(f, F[prev[u]][u]);
97 - RF -= f;
98 - total_flow += f;
99 108
100 - for(int u=T; u!=S; u=prev[u])
101 - {
109 + // Run the flow as much as possible
110 + total_flow += f;
111 + for(int u=T; u!=S; u=prev[u]) {
102 112 total_cost += f * C[prev[u]][u];
103 113 F[prev[u]][u] -= f;
104 114 F[u][prev[u]] += f;
105 115 }
106 -
107 - // Update the potential
108 - for(int u=0; u<N; ++u)
109 - h[u] += d[u];
110 116 }
111 117 return make_pair(total_cost, total_flow);
112 118 }
113 119 };
114 120
115 121 class FoxCardGame { public:
116 122 double theMaxProportion(vector <double> pileA, vector <double> pileB, int k)
................................................................................
195 201 double pileA_[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0};
196 202 vector <double> pileA(pileA_, pileA_+sizeof(pileA_)/sizeof(*pileA_));
197 203 double pileB_[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0};
198 204 vector <double> pileB(pileB_, pileB_+sizeof(pileB_)/sizeof(*pileB_));
199 205 int k = 50;
200 206 double _ = 16.846938775510203;
201 207 END
202 -/*
203 208 CASE(5)
204 - double pileA_[] = ;
209 + double pileA_[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0};
205 210 vector <double> pileA(pileA_, pileA_+sizeof(pileA_)/sizeof(*pileA_));
206 - double pileB_[] = ;
211 + double pileB_[] = {51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0, 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 100.0};
207 212 vector <double> pileB(pileB_, pileB_+sizeof(pileB_)/sizeof(*pileB_));
208 - int k = ;
209 - double _ = ;
213 + int k = 50;
214 + double _ = 21.128144186967717;
210 215 END
211 -*/
212 216 }
213 217 // END CUT HERE
218 +