Overview
SHA1 Hash: | 068d2337c18f12e179030ee257e067a1aa4de61c |
---|---|
Date: | 2011-09-18 02:59:23 |
User: | kinaba |
Comment: | mod arith library revised. |
Timelines: | family | ancestors | descendants | both | trunk |
Downloads: | Tarball | ZIP archive |
Other Links: | files | file ages | manifest |
Tags And Properties
- branch=trunk inherited from [9165bd3629]
- sym-trunk inherited from [9165bd3629]
Changes
Modified lib/numeric/modArith.cpp from [f45d60576bba9894] to [76c58f82b36b80e2].
7 7 //------------------------------------------------------------- 8 8 9 9 static const int MODVAL = 1000000007; // must be prime for op/ 10 10 struct mint 11 11 { 12 12 int val; 13 13 mint():val(0){} 14 - mint(int x):val(x%MODVAL) {} 15 - mint(LL x):val(x%MODVAL) {} 14 + mint(int x):val(x%MODVAL) {} // x>=0 15 + mint(size_t x):val(x%MODVAL) {} // x>=0 16 + mint(LL x):val(x%MODVAL) {} // x>=0 16 17 }; 17 -mint operator+(mint x, mint y) { return x.val+y.val; } 18 -mint operator-(mint x, mint y) { return x.val-y.val+MODVAL; } 19 -mint operator*(mint x, mint y) { return LL(x.val)*y.val; } 20 -mint POW(mint x, int e) { 21 - mint v = 1; 22 - for(;e;x=x*x,e>>=1) 23 - if(e&1) 24 - v=v*x; 25 - return v; 26 -} 27 -mint operator/(mint x, mint y) { return x * POW(y, MODVAL-2); } 18 +mint& operator+=(mint& x, mint y) { return x = x.val+y.val; } 19 +mint& operator-=(mint& x, mint y) { return x = x.val-y.val+MODVAL; } 20 +mint& operator*=(mint& x, mint y) { return x = LL(x.val)*y.val; } 21 +mint POW(mint x, LL e) { mint v=1; for(;e;x*=x,e>>=1) if(e&1) v*=x; return v; } 22 +mint& operator/=(mint& x, mint y) { return x *= POW(y, MODVAL-2); } 23 +mint operator+(mint x, mint y) { return x+=y; } 24 +mint operator-(mint x, mint y) { return x-=y; } 25 +mint operator*(mint x, mint y) { return x*=y; } 26 +mint operator/(mint x, mint y) { return x/=y; } 27 +vector<mint> FAC_(1,1); 28 +mint FAC(LL n) { while( FAC_.size()<=n ) FAC_.push_back( FAC_.back()*FAC_.size() ); return FAC_[n]; } 29 +mint C(LL n, LL k) { return k<0 || n<k ? 0 : FAC(n) / (FAC(k) * FAC(n-k)); } 30 + 28 31 29 -vector<mint> FAC_(1,1); 30 -void FAC_INIT(int n) { while( FAC_.size()<=n ) FAC_.push_back( FAC_.back()*FAC_.size() ); } 31 -mint FAC(mint x) { return FAC_[x.val]; } 32 -mint C(mint n, mint k) { return k.val<0 || n.val<k.val ? 0 : FAC(n) / (FAC(k) * FAC(n-k)); } 32 + 33 33 34 34 /* 35 35 // MODVAL must be a prime!! 36 36 LL GSS(LL k, LL b, LL e) // k^b + k^b+1 + ... + k^e 37 37 { 38 38 if( b > e ) return 0; 39 39 if( k <= 1 ) return k*(e-b+1);