import util;
////////////////////////////////////////////////////////////////////////////////
class Pos
{
public immutable int y, x;
mixin DeriveCreate;
mixin DeriveCompare;
mixin DeriveShow;
Pos clone() const { return cast(Pos) this; }
@property:
Pos wait() { return this.clone(); }
Pos up() { return new Pos(y+1, x); }
Pos down() { return new Pos(y-1, x); }
Pos left() { return new Pos(y, x-1); }
Pos right() { return new Pos(y, x+1); }
alias wait W,w;
alias up U,u;
alias down D,d;
alias left L,l;
alias right R,r;
}
unittest
{
assert( (new Pos(2,1)).U == new Pos(3,1) );
assert( (new Pos(0,1)).D == new Pos(-1,1) );
assert( (new Pos(2,1)).L == new Pos(2,0) );
assert( (new Pos(2,1)).R == new Pos(2,2) );
int[Pos] aa;
aa[new Pos(1,2)] = 1;
aa[new Pos(1,2)] = 2;
aa[new Pos(2,1)] = 3;
assert( aa.length==2 );
assert( aa[new Pos(1,2)]==2 );
}
////////////////////////////////////////////////////////////////////////////////
class Water
{
public immutable int base, pace;
mixin DeriveCreate;
mixin DeriveCompare;
mixin DeriveShow;
Water clone() const { return cast(Water)this; }
static load(string[string] params)
{
return new Water(params.get("Water", "0").to!int(),
params.get("Flooding", "0").to!int());
}
int level(int number_of_update) const
{
return pace ? base+(number_of_update/pace) : base;
}
int until_rise(int number_of_update) const
{
return pace ? pace-number_of_update%pace : int.max;
}
}
unittest
{
Water w = new Water(1, 3);
assert( 1 == w.level(0) );
assert( 1 == w.level(1) );
assert( 1 == w.level(2) );
assert( 2 == w.level(3) );
assert( 2 == w.level(4) );
assert( 2 == w.level(5) );
assert( 3 == w.level(6) );
w = new Water(1, 0);
assert( 1 == w.level(0) );
assert( 1 == w.level(1) );
assert( 1 == w.level(2) );
assert( 1 == w.level(3) );
assert( 1 == w.level(4) );
assert( 1 == w.level(5) );
}
////////////////////////////////////////////////////////////////////////////////
class Hige
{
public immutable int pace;
mixin DeriveCreate;
mixin DeriveCompare;
mixin DeriveShow;
Hige clone() const { return cast(Hige)this; }
static load(string[string] params)
{
return new Hige(params.get("Growth", "25").to!int());
}
bool is_growing_turn(int turn) const
{
return pace ? turn%pace == pace-1 : false;
}
int until_rise(int turn) const
{
return pace ? pace-turn%pace : int.max;
}
}
////////////////////////////////////////////////////////////////////////////////
class Map
{
mixin DeriveShow;
static Map load(string[] raw_data, string[string] params, char[char] trampo)
{
// TODO: choose optimal representation.
return new Map(raw_data, params, trampo);
}
char[][] data;
Pos robot;
Pos lift;
int waterproof;
Pos[char] tr_target;
Pos[][char] tr_source;
const(Hige) hige;
int razor;
int collected_lambda;
int total_lambda;
Map clone() const { return new Map(this); }
this(in Map m) {
foreach(s; m.data)
this.data ~= s.dup;
this.robot = m.robot.clone();
this.lift = m.lift.clone();
this.waterproof = m.waterproof;
this.tr_target = cast(Pos[char])m.tr_target;
this.tr_source = cast(Pos[][char])m.tr_source;
this.hige = m.hige.clone();
this.razor = m.razor;
this.collected_lambda = m.collected_lambda;
this.total_lambda = m.total_lambda;
}
this(string[] raw_data, string[string] params, char[char] trampo)
{
int width = 0;
foreach(r; raw_data)
width = max(width, r.length);
foreach(r; raw_data) {
this.data ~= r.dup;
this.data[$-1].length = width;
this.data[$-1][r.length..$] = ' ';
}
for(int y=1; y<=H; ++y)
for(int x=1; x<=W; ++x) {
if(this[y,x] == 'R')
this.robot = new Pos(y,x);
if(this[y,x] == 'L' || this[y,x] == 'O')
this.lift = new Pos(y,x);
if(this[y,x] == '\\' || this[y,x] == '@')
total_lambda++;
}
Pos[char] tr_pos;
for(int y=1; y<=H; ++y)
for(int x=1; x<=W; ++x) {
char c = this[y,x];
if('1'<=c && c<='9' || 'A'<=c&&c<='I')
tr_pos[c] = new Pos(y,x);
}
this.waterproof = params.get("Waterproof", "5").to!int();
foreach(fr,to; trampo) {
tr_target[fr] = tr_pos[to];
if(to !in tr_source) tr_source[to] = [];
tr_source[to] ~= tr_pos[fr];
}
this.hige = Hige.load(params);
this.razor = params.get("Razors", "0").to!int();
}
const @property {
int H() { return data.length; }
int W() { return data[0].length; }
}
const {
char opIndex(int y, int x)
{
// Adjust coordinate to the spec. bottom-left is (1,1).
--y, --x;
if(y<0||H<=y||x<0||W<=x)
return '#';
return data[H-1-y][x];
}
char opIndex(in Pos p)
{
return this[p.y, p.x];
}
}
void opIndexAssign(char c, int y, int x)
{
// Adjust coordinate to the spec. bottom-left is (1,1).
--y, --x;
if(y<0||H<=y||x<0||W<=x)
return;
data[H-1-y][x] = c;
}
void opIndexAssign(char c, in Pos p)
{
this[p.y, p.x] = c;
}
Pos[] objects(char c) const {
Pos[] ans;
for(int y=1; y<=H; ++y)
for(int x=1; x<=W; ++x)
if(this[y,x] == c)
ans ~= new Pos(y,x);
return ans;
}
Pos[] razors() const { return objects('!'); }
Pos[] lambdas() const { return objects('\\'); }
bool cleared() const
{
for(int y=1; y<=H; ++y)
for(int x=1; x<=W; ++x)
if(this[y,x] == 'L' || this[y,x] == 'O')
return false;
return true;
}
bool command(char c, int turn)
{
assert( this[robot] == 'R' );
if(c=='R') return move( 0, +1, turn);
if(c=='L') return move( 0, -1, turn);
if(c=='U') return move(+1, 0, turn);
if(c=='D') return move(-1, 0, turn);
if(c=='W') return move( 0, 0, turn);
if(c=='S') return use_razor(turn);
assert(false);
}
bool use_razor(int turn)
{
if(razor) {
razor--;
for(int dy=-1; dy<=+1; ++dy)
for(int dx=-1; dx<=+1; ++dx)
if(this[robot.y+dy,robot.x+dx] == 'W')
this[robot.y+dy,robot.x+dx] = ' ';
}
return update(turn);
}
bool rocky(char c) { return c=='*' || c=='@'; }
bool move(int dy, int dx, int turn)
{
int y = robot.y;
int x = robot.x;
if( '\\' == this[y+dy,x+dx] )
collected_lambda++;
if( '!' == this[y+dy,x+dx] )
razor++;
if( " \\!.O".count(this[y+dy,x+dx])==1 ) {
this[y,x]=' ';
this[y+dy,x+dx]='R';
robot = new Pos(y+dy,x+dx);
} else if(dy==0 && rocky(this[y+dy,x+dx]) && ' '==this[y+dy*2,x+dx*2]) {
char rock = this[y+dy,x+dx];
this[y,x]=' ';
this[y+dy,x+dx]='R';
this[y+dy*2,x+dx*2]=rock;
robot = new Pos(y+dy,x+dx);
} else if('A'<=this[y+dy,x+dx] && this[y+dy,x+dx]<='I') {
this[y,x]=' ';
Pos tp = tr_target[this[y+dy,x+dx]];
foreach(p; tr_source[this[tp]])
this[p] = ' ';
this[tp] = 'R';
robot = tp;
}
return update(turn);
}
bool update(int turn)
{
bool dead = false;
char[][] next;
foreach(y,s; data)
next ~= s.dup;
ref char access(Pos p) { return next[H-p.y][p.x-1]; }
for(int y=1; y<=H; ++y)
for(int x=1; x<=W; ++x) {
Pos p = new Pos(y,x);
char rock = this[p];
if(rocky(this[p])) {
if(this[p.D]==' ') {
access(p) =' ';
access(p.D)=(rock=='@'&&this[p.D.D]!=' ' ? '\\' : rock);
if(robot == p.D.D)
dead=true;
}
else if((rocky(this[p.D]) || this[p.D]=='\\') && this[p.R]==' ' && this[p.R.D]==' ') {
access(p)=' ';
access(p.R.D)=(rock=='@'&&this[p.R.D.D]!=' ' ? '\\' : rock);
if(robot == p.R.D.D)
dead=true;
}
else if(rocky(this[p.D]) && this[p.L]==' ' && this[p.L.D]==' ') {
access(p)=' ';
access(p.L.D)=(rock=='@'&&this[p.L.D.D]!=' ' ? '\\' : rock);
if(robot == p.L.D.D)
dead=true;
}
}
else if(this[p]=='L') {
if(collected_lambda == total_lambda)
access(p) = 'O';
}
else if(this[p]=='W') {
if( hige.is_growing_turn(turn) )
for(int dy=-1; dy<=+1; ++dy)
for(int dx=-1; dx<=+1; ++dx)
if(this[p.y+dy,p.x+dx] == ' ')
access(new Pos(p.y+dy,p.x+dx)) = 'W';
}
}
data = next;
return dead;
}
}
////////////////////////////////////////////////////////////////////////////////
class Game
{
mixin DeriveShow;
static Game load(File input)
{
string[] raw_data;
string[string] params;
// Raw map data; read until empty line.
for(string line; !(line=input.readln().chomp()).empty; )
raw_data ~= line;
// Additional commands; read until EOF.
char[char] trampo;
for(string line; !(line=input.readln()).empty; ) {
string[] ss = line.split();
if( ss.length == 2 )
params[ss[0]] = ss[1];
if( ss.length == 4 && ss[0]=="Trampoline" && ss[2]=="targets" )
trampo[ss[1][0]] = ss[3][0];
}
return load(raw_data, params, trampo);
}
static Game load(string[] raw_data, string[string] params, char[char] trampo = null)
{
return new Game(raw_data, params, trampo);
}
this(string[] raw_data, string[string] params, char[char] trampo)
{
this.map = Map.load(raw_data, params, trampo);
this.water = Water.load(params);
}
Game clone() const { return new Game(this); }
this(in Game g) {
map = g.map.clone();
water = g.water.clone();
turn = g.turn;
dead = g.dead;
cleared = g.cleared;
under_water = g.under_water;
}
void command(char c)
{
assert(c != 'A');
if(dead || cleared)
return;
// TODO: clarify the event order
bool dead_now = map.command(c, turn);
if( map.cleared() ) {
cleared = true;
}
else {
if( dead_now )
dead = true;
}
if(!cleared) {
if( map.robot.y <= water_level )
++under_water;
else
under_water = 0;
if( under_water > map.waterproof )
dead = true;
}
turn += 1;
}
Map map;
Water water;
int turn = 0;
bool dead = false;
int under_water = 0;
bool cleared = false;
// TODO: when adding members, take care of clone().
// TODO: fix this poor design.
@property const {
long score() { return map.collected_lambda*(dead ? 25L : cleared ? 75L : 50L) - turn; }
int water_level() { return water.level(turn); }
int water_until_rise() { return water.until_rise(turn); }
int hige_until_rise() { return map.hige.until_rise(turn); }
int hp() { return map.waterproof - under_water; }
}
}