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ABSTRACT

Although monadic second-order logic (MSO) has been a foundation of XML queries, little

work has attempted to take MSO formulae themselves as a programming construct. Indeed,

MSO formulae are capable of expressing (1) all regular queries, (2) deep matching without

explicit recursion, (3) queries in a “don’t-care semantics” for unmentioned nodes and (4) n-

ary queries for locating n-tuples of nodes. While previous frameworks for subtree extraction

(path expressions, pattern matches, etc.) each had some of these properties, none has satisfied

all of them.

In this thesis, we have designed and implemented a practical XML transformation lan-

guage called MTran that fully exploits the expressiveness of MSO. MTran is a language

based on “select-and-transform” templates similar in spirit to XSLT. However, we specialize

our templates for expressing structure-preserving transformation so as to avoid any recursive

calls to explicitly be written. Moreover, we allow templates to be nested so as to make use

of an n-ary query that depends on the n− 1 nodes selected by the preceding templates.

For the implementation of the MTran language, we have developed, as the core part, an

efficient evaluation strategy for n-ary MSO queries. This consists of (a) an exploitation of

the existing MONA system for the translation from MSO formulae to tree automata and (b)

our novel query evaluation algorithm for tree automata. Although a linear time algorithm

has been known for nullary and unary queries, the best known algorithm for n-ary queries

takes O(rt + s) time in the worst case where t is the size of the input document, s is that

of the output, and r is the size of potential matches during the query calculation, which can

grow up to tn−1 in the worst case. We have developed a more efficient O(t + s) algorithm for

n-ary queries by using partially lazy evaluation of set operations.
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Chapter 1

Introduction

1.1 XML Transformation Language

Extensible Markup Language (XML [1]) is a language to represent tree-like data,

standardized by World Wide Web Consortium (W3C). XML is becoming more and

more commonly adopted in many areas as standard data formats such as XHTML,

RDF, SVG, MathML, etc. To cover these increasing demands, flexible and expressive

framework for XML processing is desired.

XML processing is essentially a process of XML transformation. We query data

from input XML documents, convert them into another desired XML format, and

output them. For XML queries, as an analogy to first-order logic being a basis for

relational queries, monadic second-order logic (MSO) has gradually stabilizing its posi-

tion as a foundation. For example, there have been proposals for XML query languages

whose expressivenesses are provably MSO-equivalent [2, 3] and for theoretical models

for XML transformation with MSO as a sublanguage for node selection [4, 5]. How-

ever, little attempt has been made for bringing MSO logic formulae themselves into

an actual language system for XML processing.

The goal of our work is to design and implement a practical XML transformation

language based on MSO queries. We implement a language MTran, and in particular,

address the following two challenges:

• a surface language design for XML transformation that leverages the strength of

MSO queries, and

• an efficient algorithm to process MSO queries.
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Regularity No Recursion Don’t care N-ary

Pattern » »

Path » »

Datalog » »

MSO » » » »

Table 1.1: Comparisons between query languages

1.2 Our Approach

1.2.1 Monadic Second Order Logic

MSO is first-order logic extended with second-order variables ranging over sets of

domain elements—i.e., tree nodes, in the setting of XML queries—in addition to first-

order variables ranging over domain elements themselves. Why do we think that such

logic is suitable for writing queries on XML documents? The reasons are fourfold.

• The class of all regular queries can be captured.

• No explicit recursions are required to locate nodes distant from context nodes.

• There is no need to mention the nodes that are irrelevant to the query (“don’t-

care semantics”).

• N -ary queries are naturally expressible.

While existing languages such as path expressions [6, 7, 8, 9, 10, 11], pattern matches

[12, 13], and monadic datalog queries [3] have some of these properties, MSO is the

only language that has all of them, as we argue below.

Regularity

A query over trees is called regular when there is an equivalent tree automaton with

an appropriate alphabet (Section 3.1.2). MSO is known to be able to express all regular

queries [14], while most of existing path-based node selection languages (including

XPath [6], currently the most popular path language) do not have this property. This

lack of regularity does not only indicate theoretical weakness in expressive power,

but also has a practical impact since it fails to be able to represent even slightly

complicated conditions for node selection. An obvious example is that one cannot

write “select every node that conforms to a specified schema for XML” since schemas

written in usual schema languages like DTD [1], XML Schema [15], and RELAX NG
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[16] heavily rely on regular expressions for trees (in particular, RELAX NG schemas

can represent any regular tree languages) and thus exceed the expressiveness of those

path-based selection languages. As a more realistic example, the following query

“select, from an XHTML document, every <h2> node that appears between

the current node and the next <h1> node from the current node in the

document order”

is naturally expressible in MSO as we will see in Section 4.1.1, whereas it is not in

most path languages.

No recursion

The way that MSO formulae express retrieval conditions is in a sense logically di-

rect and, in particular, it does not require recursively defined constraints for reaching

nodes that are located in arbitrarily deep positions. Several query languages such reg-

ular expression patterns and monadic datalog, while being able to capture all regular

queries, incur recursive definitions for deep matching. As a result, even an extremely

simple query like “select all <a> elements in the input document” needs an explicit

recursion. Writing down recursion is often tedious work and in particular unfriendly

to naive programmers; it is much more helpful to be able to express such a simple

query like

x in <a>

as in MSO.

Don’t-care semantics

The directness of MSO’s way of expression also allows us to completely avoid

mentioning nodes that are irrelevant to the query. It is in contrast to some languages

such as regular expression patterns, where we need to specify conditions that the whole

tree structure should satisfy. For example, suppose that we want to write a query that

retrieves the set of nodes x whose at least one child node labeled <b>. In regular

expression patterns, we would write as follows

x as ~[Any, b[Any], Any]

where we have to “mention” the siblings and the content of the <b> node by the wild

card Any to complete the pattern. In MSO, on the other hand, we can write in the

following way
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ex1 y: x/y & y in <b>

where we only refer to the nodes of our interest: the node x itself and the child <b>

node y. No condition is ever explicitly specified for other irrelevant nodes, even by

wildcards. This “don’t-care semantics” might not be advantageous for specifying a

very complicated constraint such as conformance to a schema, while it makes most of

usual queries extremely concise.

N-ary queries

An n-ary query locates n-tuples of nodes of the input XML tree that simultaneously

satisfy a specified condition. MSO, as it is a formal logic, can naturally express n-ary

queries by formulae with distinct n free variables. For example, the following ternary

query

ex1 p: p/x & p/y & p/z &

x in <a> & y in <b> & z in <c>

expresses the condition that given three nodes x, y, and z share a common parent node

p and are tagged with <a>, <b>, and <c>, respectively. Although path-based query

languages like XPath suit to express binary queries that express relations between a

previously selected node and another, they cannot represent general n-ary queries.

Similarly, monadic datalog can express arbitrary unary MSO formulae but not any

higher-arity queries.

1.2.2 XML Transformation with MSO

MSO by itself is thus a powerful specification language for node selection. However,

our aim is to further make use of MSO formulae for the transformation of XML

documents. Then, the question is: what is a language design principle that fully

exploits the high expressive power of MSO?

Structure-preserving transformation

Since it is one of MSO’s advantages that we can select nodes in any depth with

no explicit recursions, it would paradigmatically be smooth if we can also express a

transformation of trees of any depth without any recursions. For example, given an

input document where <A> elements may be nested one inside another, consider the

transformation that encloses every <A> element in the input document by a new <B>

element. In our language, this transformation can be written by the following one line:
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{visit x :: x in <A> :: B[x]}

Here, we first select all the <A> elements by the MSO formula ”x in <A>” and

then transform each of these elements accordingly to the rule “B[x],” i.e., enclose the

element by the <B> tag. The whole output is the reconstruction of the input tree where

each select element is replaced by the result of its local transformation.

Compare the above program in our language with the same transformation written

in XSLT:

<xsl:stylesheet version="1.0" ...>

<xsl:template match="A">

<B><A><xsl:apply-templates/></A></B>

</xsl:template>

<xsl:template match="@*|node()">

<xsl:copy>

<xsl:apply-templates/>

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

In this, we similarly select all the <A> elements (by an XPath expression) and then,

for each selected element, we create a <B> element containing an <A> element. The

most important difference, however, is that XSLT requires us to explicitly write a

recursive application of the template to the child nodes (<xsl:apply-templates/>)

for computing the content of the <A> element. Our design principle is to eliminate such

explicit recursion for avoiding the necessity to follow the data flow for understanding

the program, thus making transformation more intuitively readable and writable for

naive programmers.

Choice of visit and gather

In MSO, we only need to mention the nodes that are relevant to the query and can

directly jump into them without any navigation. We would like to lift this concept to

our transformation language. Above, we have illustrated a transformation that jumps

directly to each matched node and replaces it with an output fragment. In this case,

the nodes that are not matched are retained in the result. However, in general, we

provide two choices for the treatment of such unmatched nodes, either to keep them

or to drop them. These correspond to the keywords visit and gather, respectively,
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and can be specified by the user for each use of an MSO formula. For example, the

following

<root>

{gather x :: x in <A> :: B[x]}
</root>

is similar to the previous example except that it uses gather instead of visit. As

a result, the root element of the output XML contains a list of all <A> elements

appearing in the input XML, each wrapped by a <B> element.

Nested templates

XSLT uses XPath binary queries for selecting a node with respect to a single

previously selected node, i.e., the context node. Our language pushes this approach

further for exploiting MSO’s capability to express general n-ary queries. Specifically,

we allow templates to be nested and an inner MSO formula to refer to variables that

are bound in the outer templates. For example, see the following program:

List[

{gather p :: p in <map> ::

{gather n :: p/<name>/n ::

{gather v :: p/<value>/v ::

Pair[ n ", " v ]

}}}
]

Figure 1.1: A transformation using binary queries

This program converts a document representing a one-to-many mapping, e.g.,

<mapping>

<map>

<name>Hello</name>

<value>1</value>

<value>2</value>

</map>

<map>

<name>World</name>
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<value>3</value>

<value>4</value>

</map>

</mapping>

to another representing a many-to-many mapping:

<List>

<Pair>Hello, 1</Pair>

<Pair>Hello, 2</Pair>

<Pair>World, 3</Pair>

<Pair>World, 4</Pair>

</List>

Note that the selection conditions for the variables n and v both depend on the

outer variable p. Although this example only uses binary queries, it is easy to see

that we can also specify higher-arity queries in the same framework. Another point of

this example is that, inside the scope where we have already selected a node for n, we

can directly refer to the variable p that is bound in the two-block outer scope. Note

that such flexibility, which is not present in XSLT, can naturally be obtained by the

combination of logic formulae with free variables and nested templates with lexical

scoping.

1.2.3 Algorithm

In order to implement a practical system for our transformation language, what

we critically need is an efficient evaluation algorithm for n-ary MSO queries, that is,

one that takes, as inputs, an MSO formula with n free variables and a tree structure

and calculates the set of n-tuples that satisfy the formula. Our language system uses

an n-ary query algorithm for the following two situations.

• selection of tuples of nodes that simultaneously satisfy the condition, and

• selection of nodes that satisfy the condition relative to nodes already selected by

previous queries.

The second point has first been pointed out by Berlea et al. [17] in the context of

their language based on binary queries, but can easily be extended to our case with

n-ary queries. To illustrate this point, let us see again the example in Figure 1.1. First

of all, notice that, even if we do not have an n-ary query algorithm, we can process
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the transformation using only a unary query algorithm. That is, we first locate all the

<map> elements in the input document. Then, for each <map> element, we execute the

inner formula p/<name>/n, interpreting it as a unary query on the variable n under

the fixed the binding of the variable p to the map element. Unfortunately, this strategy

is inefficient since the above formula is evaluated as many times as the number of the

<map> elements present in the input document; since a unary query takes a linear

time in the size of the input, the binary query that we wanted would take a quadratic

time. Berlea et al.’s observation was that this could be improved if there is an efficient

algorithm for binary queries that evaluates, in our example, the above formula only

once for locating all pairs of an element and a <name> element that are in the parent-

child relation.

We have developed an efficient implementation strategy for n-ary MSO queries.

This consists of usual two steps: (1) compilation of MSO formulae to tree automata

and (2) evaluation of n-ary queries represented by tree automata. The first step is well

known to take a non-elementary time in the worst case. Our approach is to exploit the

MONA system [18], which has an established reputation in its compact and efficient

representation of MSO formulae by tree automata with binary decision diagrams and

is experimentally shown to work quickly for large formulae even of dozens of kilobytes

[19]. We have also made a preliminary experiment and confirmed that, for many

typical examples of XML queries, MONA yields an enough performance. (Section 4.2)

For the second step, we have developed a novel linear-time algorithm for n-ary

queries. The previously best known result was Berlea and Seidl’s O(rt + s) algorithm

for binary queries where t is the size of the input document, s is the number of output

tuples, and r is the size of potential matches during the query calculation. Since r

may grow up to t, their algorithm takes a quadratic time in the worst case. When

generalized to n-ary queries, r may grow up to tn−1 and the total worst case complexity

is O(tn). We have improved Berlea’s algorithm and obtained an O(t + s) algorithm

for general n-ary queries. We have achieved this by using partially lazy operations on

sets of nodes so as to eliminate unnecessary computation of potential matches.

1.3 Related Work

1.3.1 Query Algorithm

Several algorithms for MSO queries have been proposed. For unary queries, Neven

and den Bussche have given a linear-time, two-pass algorithm based on boolean at-

tribute grammars [20]. Koch [3], in his XML query language Arb based on monadic
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datalog, has developed a different linear-time, two-pass algorithm using selecting tree

automata, which exactly captures the class of unary MSO queries.

The binary query algorithm proposed by Berlea and Seidl [17], which has been

used for the implementation of the fxt functional XML transformer [21], is the basis

of our algorithm presented in this paper. We have shown that their worst case time

complexity O(t2 + s) can be improved to O(t + s) (where t and s are respectively

the sizes of the input and the output) by using lazy set operations, and furthermore

our strategy can be generalized it to n-ary queries without sacrificing the linear time

complexity.

Niehren et al.[22] have presented a linear time algorithm for n-ary MSO queries

in the restricted case where the query is essentially a Cartesian product of n unary

queries. They have shown that existential runs of unambiguous tree automata capture

this class of queries and presented an effective algorithm to decide the unambiguity of

tree automata. However, as far as we can tell from our experiences using our language,

almost all n-ary queries appearing in practical settings use variables in a dependent

way and thus do not fulfill their restriction. (See, for example, the MSO queries shown

in Chapter 4).

1.3.2 Language Design

DTL [4] and its generalization TL [5] are theoretical models for XML transforma-

tion that use, like us, MSO formulae for node selection. However, their purpose of

research is to seek for theoretical properties of transformation models whereas ours is

to obtain a concrete design and an efficient implementation technique for a transfor-

mation language leveraging the full strength of MSO. Thus, on one hand, they have

found desirable properties such as decidability of precise typechecking, which is not

known for our language. On the other hand, we have incorporated a number of de-

sign considerations not present in their languages. Specifically, our language allows

transformation of arbitrarily deep trees without recursion, while theirs incurs explicit

recursion; ours provides the choice of retaining and dropping for nodes not selected by

queries, while theirs allows only the second; ours allows nested templates to make use

of n-ary queries, while their is limited to binary queries.

Nakano has proposed an XML transformation language XTiSP [23] that has visit

and invite constructs. Although these look similar to our visit and gather, they

have slightly simpler semantics (e.g., they can go only forward) for their primary

purpose of stream processing. Also, XTiSP uses path expressions for node selection
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and thus is limited to binary queries.

1.4 Structure of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we introduce the

formal syntax and semantics of our MTran language. We first argue about the query

part of MTran, and then explain the whole transformation language. Chapter 3 gives a

detailed explanation of our query algorithm of n-ary MSO formulae after a brief review

of some known facts on MSO and tree automata. In Chapter 4, we give slightly bigger

examples in MTran, and show how the expressiveness of MSO is useful in practice.

Chapter 5 concludes this thesis and suggests possible directions for future work.
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Chapter 2

Language

2.1 Binary Trees and XML representation

Definition 1. Let Σ be an alphabet set. A binary tree t over Σ is a mapping from

a finite prefix-closed set Pos(t) ⊆ {l, r}∗ into Σ. An element p ∈ Pos(t) is called a

position or a node of t, and the alphabet t(p) ∈ Σ assigned to p is called the label of

p. The empty sequence node ε is called the root of t.

Our goal is to handle XML documents, which in general are not binary trees but are

unranked trees (trees whose each node has an arbitrary number of child nodes). Since

our algorithm to query XML is designed to use binary trees, we encode an unranked

tree as a binary tree using a widely accepted encoding. The first child of a node in

unranked trees is regarded as the left child of the node in the encoded binary tree,

and the right neighboring sibling in unranked trees is encoded as the right node of the

node. Figure 2.1 shows an example of this encoding.

In MTran, XML documents are modeled as trees containing three types of node:

element nodes, attribute nodes, and text nodes. The alphabet Σ for the model tree is

Figure 2.1: Encoding an unranked tree(left) to a binary tree(right)

11



msg

item

item@lang

@lang

"Bonjour"

"Hello""en"

"fr"

Figure 2.2: The binary tree representation of the example XML

the union of element names, attribute names, and text content appearing in the input

document. For example, the following XML document:

<msg>

<item lang="en">Hello</item>

<item lang="fr">Bonjour</item>

</msg>

is modeled as a tree with Σ = {msg, item, @lang, "en", "Hello", "fr", "Bonjour"}.
Here, the symbol @ of @lang represents that this name is for attributes. Attribute nodes

are treated as children of the belonging element node inserted before other ordinary

child nodes. We distinguish attributes nodes from other nodes only by means of the

labels. Thus, the previous example is represented as shown in the binary tree in

Figure 2.2.

Our current implementation does not support comments and processing instruc-

tions, and simply ignores them. Also, it does not yet treat XML namespaces. Those

are left as future work.

2.2 Query Expressions

Query expressions specify conditions of nodes that we want to extract from the

input XML documents, and can be embedded in transformation templates. In this

section, we first describe the core syntax of query expressions. We next define the

semantics of expressions in the core syntax. We then give syntax sugars on top of the

core primitives for the convenient and reusable description of queries.
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2.2.1 Core Syntax

As we mentioned in the introduction, we adopt Monadic Second-Order Logic

(MSO) formulae as our query language. MSO is a kind of logic that allows the use of

second-order variables ranging over sets of domain elements in addition to first-order

variables ranging over domain elements themselves. The following BNF defines the

core syntax:

x ∈ First-order variable symbols

X ∈ Second-order variable symbols

e ∈ XML element names

a ∈ XML attribute names

p ::= x | root
S ::= X | <e> | @a | <*> | @* | #
ϕ ::= p = p | S = S | p in S

| ~ϕ | ϕ&ϕ | ϕ|ϕ | ϕ=>ϕ

| ex1 x:ϕ | all1 x:ϕ | ex2 X:ϕ | all2 X:ϕ

| firstChild(p,p) | nextSibling(p,p)

A first-order term is denoted by p and a second-order term by S. The first-order

constant symbol root denotes the root node of the input tree. Each constant set

symbol <e> denotes the set of element nodes labeled e in the input XML document,

and each constant set symbol @a denotes the set of attribute nodes labeled @a similarly.

Th other three second-order terms <*>, @*, and # are called wild-card terms denoting

the set of any element nodes, any attribute nodes, and any text nodes, respectively.

The last two constructs of ϕ are the primitives to describe the property of tree

structures. As its name shows, firstChild(p,q) becomes true if and only if the first

child of node p is q. The relation nextSibling(p,q) is defined similarly. These two

primitives correspond to the edge relations in the binary tree encoding we introduced

in Section 2.1.

Example 1. The following query requires that for a node x, this node and all its left

descendants are element nodes labeled as a:

ex2 R: (x in R & all1 y:all1 z:(y in R & firstChild(y,z) => z in R)

& all1 w:(w in R => w in <a>))

13



2.2.2 Semantics

Now we give the semantics for MSO formulae. We first define the interpretation

of terms.

Definition 2. Let Σ be an alphabet and t be a binary tree over Σ. Under an assign-

ment γ that maps each first-order variable to an element of Pos(t), first-order terms

are interpreted as follows:

γ[x] = γ(x)

γ[root] = ε

Also, under an assignment Γ for second-order variables, second-order terms are inter-

preted as follows:

Γ[X] = Γ(X)

Γ[<e>] = {p | t(p) = e}
Γ[@a] = {p | t(p) = @a}

Γ[<*>] =
⋃

e∈Σ

{p | t(p) = e}

Γ[@*] =
⋃

@a∈Σ

{p | t(p) = @a}

Γ[#] =
⋃

"s"∈Σ

{p | t(p) = "s"}

Definition 3. An MSO formula ϕ is interpreted under a binary tree t over Σ, a

first-order assignment γ, and a second-order assignment Γ, as follows:

t, γ, Γ ² p1 = p2 ⇐⇒ γ[p1] = γ[p2]

t, γ, Γ ² S1 = S2 ⇐⇒ Γ[S1] = Γ[S2]

t, γ, Γ ² p in S ⇐⇒ γ[p] ∈ Γ[S]

t, γ, Γ ² ~ϕ ⇐⇒ t, γ, Γ 6² ϕ

t, γ, Γ ² ϕ1&ϕ2 ⇐⇒ t, γ, Γ ² ϕ1 and t, γ, Γ ² ϕ2

t, γ, Γ ² ϕ1|ϕ2 ⇐⇒ t, γ, Γ ² ϕ1 or t, γ, Γ ² ϕ2

t, γ, Γ ² ex1 x:ϕ ⇐⇒ there exists a ∈ Pos(t) s.t. t, γx:=a, Γ ² ϕ

t, γ, Γ ² all1 x:ϕ ⇐⇒ for all a ∈ Pos(t) t, γx:=a, Γ ² ϕ

t, γ, Γ ² ex2 X:ϕ ⇐⇒ there exists A ∈ 2Pos(t) s.t. t, γ, ΓX:=A ² ϕ

t, γ, Γ ² all2 X:ϕ ⇐⇒ for all A ∈ 2Pos(t) t, γ, ΓX:=A ² ϕ
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t, γ, Γ ² firstChild(p1, p2) ⇐⇒ γ(p1).l = γ(p2)

t, γ, Γ ² nextSibling(p1, p2) ⇐⇒ γ(p1).r = γ(p2)

Here, γx:=a represents a variable assignment that maps the variable x to a and the

other variables to the same nodes as γ does. An assignment ΓX:=A for second-order

variables is defined similarly. The dot operator . used in the definition of firstChild

and nextSibling denotes the concatenation of sequences from {l,r}.

2.2.3 Auxiliary Syntax

Macro Expressions

Programmers can define their own macros for frequently used formulae by the form

m ∈ Macro names

V ::= var1 x | var2 X

MacroDef ::= pred m(V , · · · ,V ) = ϕ;

where each of V can be either a first-order or a second-order variable declaration. We

also augment the syntax for formulae as follows

T ::= p | S

ϕ ::= . . . | m(T, · · · ,T)

where macro call form m(T1, · · · , Tn) is expanded to its definition whose parameter

variables are replaced with the supplied arguments. Note that macro definitions cannot

be recursive. Macros are useful not only for concise description of queries, but also for

efficient static processing by separate compilation.

Path Expressions

Our core syntax has only two primitive relations on tree nodes, firstChild and

nextSibling. This reflects our encoding of XML into binary trees described in Sec-

tion 2.1. Although these two primitives have sufficient expressiveness, it would be

convenient if one can directly use relations based on the unranked view of the input

XML tree. For this purpose, we define four relations by macros as shown in Figure 2.3.

Namely, the relation p_cs(p,C) asserts that the set of all children of the node p (in

the unranked view) is C, and the relation p_c(p,c) asserts that c is one of the children
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¶ ³
pred p_cs( var1 p, var2 C ) =

all1 c: (c in C <=>

firstChild(p,c) | ex1 b: (b in C & nextSibling(b,C)));

pred p_c( var1 p, var1 c ) =

ex2 C: (p_cs(p,C) & c in C);

pred a_ds( var1 a, var2 D ) =

all1 d: (d in D <=>

p_c(a,d) | ex1 b: (b in D & p_c(b,d)));

pred a_d( var1 p, var1 d ) =

ex2 D: (a_ds(a,D) & d in D);
µ ´

Figure 2.3: Representing unranked view in binary MSO

of p. The macros a_ds and a_d define similar relations except that these are based on

the ancestor-descendant relationship in the unranked view.

Since those relations are frequently used in XML queries, we specially define a

syntax to use those relations for mimicking XPath [6] expressions.

D ::= / | //
U ::= x | S | p:S

ϕ ::= . . . | UDUD · · ·DU | /UD · · ·DU

Here, D stands for path delimiters and U stands for path units. The expression p/q

(p//q) means that the node denoted by p is the parent (respectively, an ancestor) of

the node denoted by q in the original unranked tree. In other words, p/q is equivalent

to p_c(p,q) and p//q is equivalent to a_d(p,q). When applied to second-order

terms, such a path expression has an existential meaning. For example, p/<tag> is

a shorthand for ex1 x: p_c(p,x) & x in <tag>. When applied to a pair of first-

and second-order terms p:S, the expression simultaneously declares that p in S and

the term p satisfies the very path expression. For instance, the expression x:<a>/y is

equivalent to x in <a> & x/y, and thus also equivalent to x in <a> & p_c(x,y).

When more than two units are connected by path delimiters, it has a conjunctive

meaning. For example, x/y/z stands for p_c(x,y) & p_c(y,z). Delimiter-prefixed
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¶ ³
pred doc_next( var1 p, var1 q ) =

firstChild(p,q) | nextSibling(p,q)

| ex1 r: (r//p & nextSibling(r,q));

pred doc_orders( var1 p, var2 Q ) =

all1 q: (q in Q <=>

doc_next(p,q) | ex1 b: (b in Q & doc_next(b,q));

pred doc_order( var1 p, var1 q ) =

ex2 Q: doc_orders(p,Q) & q in Q;
µ ´

Figure 2.4: Document Orders

expressions /U1D1 . . . DnUn represent absolute paths from the root node. When U1 is

a first-order term, the expressions are interpreted as root=U1&U1D2 . . . DnUn. When

U1 is a second-order term, the interpretation is root:U1D2 . . . DnUn.

As an example, the path expression

/<a>//<b>/x:<c>/@d

is equivalent to the following formula without path expressions:

ex1 s: ex1 t: root in <a> & s in <b> & x in <c> & t in @d &

a_d(root,s) & p_c(s,x) & p_c(x,t)

Order Relations

Another frequently used primitive in terms of XML processing is pre-order relations

(often called document order relations) among tree nodes. We also define this relation

as a macro doc order as shown in Figure 2.4 and provide a short-hand syntax as

follows:

ϕ ::= . . . | p < p

An expression p1 < p2 is equivalent to doc order(p1, p2).
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2.3 Transformation Templates

This section describes the syntax and semantics of MTran, an XML transformation

language based on MSO.

2.3.1 Overview

Most of the definitions except for gather and visit expressions are straightfor-

ward. A gather expression, as its name shows, gathers all nodes in the input tree that

satisfies the specified MSO query expression. For example, the template

{gather x :: x in <B> :: x}

with the input

<A>

<B><C>ddd</C></B>

<C><B>eee</B></C>

<B><C><B>fff</B></C></B>

</A>

is evaluated to the list of nodes:

<B><C>ddd</C></B>

<B>eee</B>

<B><C><B>fff</B></C></B>

<B>fff</B>

Note that gather expression gathers all nodes that match the query regardless of

their inclusion relations. When we want to obtain only outermost nodes, we need to

explicitly specify the condition in the query expression like:

{gather x :: x in <B> & ~ex1 y:(y//x & y in <B>) :: x}

or more simply:

{gather x :: x in <B> & ~<B>//x :: x}

This query states “x is labeled B and none of the ancestors of x is labeled B,” and

therefore only the outermost B nodes are gathered in this case. A query to retrieve

only innermost nodes can also be written similarly.
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Semantics of visit

A visit expression visits every node that satisfies the associated query formulae

in the subtree specified by the from clause (or the whole input tree if the from clause

is not supplied). Each node that is matched by one of the queries is transformed

according to the corresponding template, and the other unmatched nodes are left

unchanged. The result of the visit expression is the list of trees obtained after the

transformation above. This is a rough semantics of our visit expressions. However,

there are subtle behaviors in details. To illustrate these, let us consider the following

template that encloses each B node with a Mark tag:

{visit x :: x in <B> :: Mark[x]}

Our semantics of visit expressions contains two kinds of recursion. We first

explain the first one of them, namely, recursion on input trees. The template produces,

e.g., from the input

<A>

<B><C>ddd</C></B>

<C><B>eee</B></C>

</A>

the result:

<A>

<Mark><B><C>ddd</C></B></Mark>

<C><Mark><B>eee</B></Mark></C>

</A>

Programmers do not need to write an explicit recursion to search and transform B nodes

located deeply inside the tree structure. Instead, the recursive behavior is embedded

in the semantics.

The second kind of recursion, namely, a recursion on generated trees, appears when

we deal with nested elements. All B nodes are enclosed by Mark tag even if some of

the Bs are nested. When we feed the input document

<A>

<B><C><B>fff</B></C></B>

</A>

the result is as follows:
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<A>

<Mark><B><C><Mark><B>fff</B></Mark></C></B></Mark>

</A>

First, the outer B is transformed with the specified template Mark[x], and then we per-

form another visitation into the generated tree. (Note that in the case such recursion

is not desired, we can specify the same condition used in the last gather example.)

This recursion is performed in order to transform other nodes from the original input

tree that are embedded in the generated nodes. We don’t retransform newly gener-

ated nodes, nor the nodes already applied the transformation in the current visit

expression. MTran is intended to be a language for one-pass transformation, and thus

our semantics applies transformations only to the nodes from the original input tree.

In the rest of this section, we formally define the syntax and the semantics of the

language.

2.3.2 Syntax

A whole program consists of a list of user-defined macros and a template, where

templates are defined by the following syntax.

EL ::= E∗

E ::= x

| "s"
| e[EL]

| @a[EL]

| {gather x :: ϕ :: EL}
| {visit x (:: ϕ :: EL)∗}
| {visit x from y (:: ϕ :: EL)∗}

E stands for expressions and EL for expression lists. A visit expression without from

clause is a syntax sugar for {visit x from root ...}.

2.3.3 Semantics

Internal form

MTran internally handles three different forms of XML representation. One is

the normal textual representation as defined in the XML standard [1]. Another is
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the binary encoding of XML trees described in Section 2.1, which is used in our

query algorithm to represent input trees. The last one is the internal form, which

is a suitable representation for both input and output trees during the evaluation

of our transformation templates. The internal trees I (trees in the internal form) is

constructed as follows:

I ::= (n, p)

n ::= e[I∗] | @a[I∗] | "s"
p ∈ {0, 1}∗ ∪ {⊥}

First part of the nodes of the internal form represents an unranked tree structure.

Second part maintains the position where the node inhabited in the input tree. In the

case of a node that is not from input tree (i.e. when the node is newly constructed

according to the template), ⊥ is assigned. We use this positional information only

for the evaluation of visit expressions, which has to traverse and search the nodes

derived from input trees embedded inside the result of associated templates, as we

later explain. For the final output as an XML document, positional information is

dropped.

An internal node e[ . . . ] corresponds to a standard XML element node <e> . . . </e>,

and @a[ . . . ] corresponds to an attribute a" . . . ". Note that the above definition may

yield an invalid XML, such as repeated attributes elem[@x[...] @x[...]] or non-

text nodes inside attributes @x[elem[...]]. Since MTran currently does not exploit

any kind of type checking, such ill-formed XMLs are detected at runtime and result

in an error.

Definition 4. A conversion function conv from a pair of binary tree t and its node p

into the internal form is defined as follows:

conv(t, p) =





(e[conv(t, p.l), . . . , conv(t, p.l

k︷ ︸︸ ︷
r · · · r)], p) t(p) = e

(@a[conv(t, p.l)], p) t(p) = @a

("s", p) t(p) = "s"

where k is the maximum number such that p.l

k︷ ︸︸ ︷
r · · · r ∈ Pos(t)

Interpretation

An EL and E is interpreted under an input binary tree t, and a first-order variable

assignment γ, and denotes a list of internal trees.
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Now we give the semantics of expressions and expression lists. The interpretation

of an expression list E1 · · ·Ek is simply the concatenation of the interpretations of

E1, E2, · · · , and Ek:

JE1 . . . , EkK(t, γ) = concat [ JE1K(t, γ) · · · JEkK(t, γ) ]

Here, [. . . ] notation represents lists, and concat is the concatenation of all the given

lists. The interpretation of expressions are as follows:

JxK(t, γ) = conv(t, γ(x))

J"s"K(t, γ) = [ ("s",⊥) ]

Je[EL]K(t, γ) = [ (e[JELK(t, γ)],⊥) ]

J@a[EL]K(t, γ) = [ (@a[JELK(t, γ)],⊥) ]

J{gather x::ϕ::EL}K(t, γ) = concat [ JELK(t, γx:=p)
∣∣ p ∈ Pos(t), γx:=p ² ϕ ]

J{visit x from y::ϕ1::EL1:: . . . ::ϕk::ELk}K(t, γ) = vis(Pos(t), conv(t, γ(y)))

where

vis(V,(n, p)) =




concat [vis(V \{p}, I)| I ∈ JEL1K(t, γx:=p)] if p ∈ V and t, γx:=p ² ϕ1

concat [vis(V \{p}, I)| I ∈ JEL2K(t, γx:=p)] if p ∈ V and t, γx:=p ² ϕ2

...

concat [vis(V \{p}, I)| I ∈ JELkK(t, γx:=p)] if p ∈ V and t, γx:=p ² ϕk

[(e[concat [vis(V, I)| I ∈ IL]], p)] if n = e[IL]

[(@a[concat [vis(V, j)| I ∈ IL]], p)] if n = @a[IL]

[("s", p)] if n = "s"

More than one condition in the definition of vis may be satisfied at a time. In that

case, the first case is chosen.

The notation [f(x) | x ∈ List (, a condition on x)] is a list comprehension. First

the elements in the List that fail to satisfy the condition are filtered out, then the

function f is applied to each remained elements and yields a result list of the form

[f(xi1) · · · f(xin)]. Here the set Pos(t) is treated as a list of elements ordered by the

document order. All MSO queries in gather and visit expressions are evaluated

under an empty second-order variable assignment (therefore omitted in the above

definitions) since we only bind first-order variables in translation templates.

Let us see the formal definition of the vis function. It takes two parameters. The

first parameter V denotes the set of input nodes that are not yet transformed in the
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current evaluation of the visit expression. The second parameter (n, p) denotes the

node currently visited. When the node matches one of the query formulae, if the node

is from the input tree and still not transformed, then the node is replaced by the list of

nodes generated from the associated template. Then again we recursively visit these

nodes; recording the current node to be already visited (the second kind of recursion

explained in the preceding subsection). When no query formulae match the node, we

just recursively go down in the tree (the first kind of recursion).

To see more clearly the subtlety of our semantics, let us consider a slightly modified

version of the previous example, which encloses each B node with a B tag:

{visit x :: x in <B> :: B[x]}

Consider the input <B><C><B>hello</B></C></B>. This input tree is converted to an

internal tree by conv function:

(B[(C[(B[("hello", lll)], ll)], l)], ε)

The vis function is first applied to this whole internal tree. This time p is ε, which

matches the condition x in <B> and evaluated to the result of B[x] expression, i.e.

(B[(B[(C[(B[("hello", lll)], ll)], l)], ε)], ⊥)

Then we revisit this generated node with the first argument V \{ε}. Although current

node is labeled B again, the value of p is ⊥, which does not satisfy the condition to

apply transformation. Next node is again p = ε, but this time, ε is already removed

from V . Therefore we don’t transform this node anymore, and go down more deeply.

Next node is labeled C, which does not satisfy the query expression x in <B>. We get:

(B[("hello", lll)], ll)

This node p = ll matches the query and is transformed similarly to the case of p = ε.

The final result of the whole visit expression successfully becomes:

(B[(B[(C[(B[(B[("hello", lll)], ll)], ⊥)], ε)], ⊥)

that each B node in the input is doubled. Finally the MTran processor should output

the result in the standard XML format as follows:

<B><B><C><B><B>hello</B></B></C></B></B>
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Termination

Since the semantics of visit expressions is defined in terms of rather complicated

recursion, it is not clear whether its evaluation terminates for any input trees. There-

fore we give a proof of termination of whole transformation templates for any inputs.

To prove the termination of the vis function and visit expressions, we first prove

the following lemma.

Lemma 1. In each step of recursion in the vis function, the pair (V, I) of arguments al-

ways strictly decreases in the lexicographical order, where V is ordered by set-inclusion

and I is ordered by the descendant-ancestor order of internal trees.

Proof. Case analysis based on the definition of vis function. When any one of the

ϕj query expression is satisfied, the recursive application of vis is done with the first

argument V \ {p}, which strictly decreases from V that contains p. When none of

the ϕj is satisfied, the recursive application of vis is done with the first argument V

unchanged and the second argument with the elements of IL, which is the subpart of

I. Thus in the arguments (V, I) strictly decrease also in this case.

Using this result, we can prove the termination of a visit expression.

Lemma 2. Assuming the termination of each subexpression list ELi, evaluation of a

visit expression under any input tree t and an assignment γ terminates.

Proof. Since the semantics of a visit expression is actually a evaluation of vis func-

tion. We have to prove the termination of the vis function. Since both set-inclusion for

finite sets and descendant-ancestor ordering are well-founded relations, by Lemma 1,

vis function is guaranteed to do well-founded recursion, which terminates in finite

steps. Each step of the recursion also terminates since it just evaluates MSO queries

(whose deterministic terminating algorithm is given in the next chapter), evaluates

subexpression list ELi (that is assured to terminated by the assumption), and con-

catenates several lists. Combining these results yields the termination of the whole vis

function.

Now we finally prove the termination of any transformation templates.

Prop 1. Evaluation of E and EL always terminates.

Proof. By simultaneous induction on the structure of E and EL. For EL, since eval-

uation of each Ei terminates by the induction hypothesis, evaluation of the whole

expression also terminates. For E, we need to prove six cases. The case of variable
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expressions x resolves to the termination of conv function, which is clear from the

definition of the function. The case of "s" expression is trivial. The cases of e[EL],

@a[EL], and gather expressions are straightly derived from the induciton hypothesis.

The case of visit expressions is already proven by Lemma 2.
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Chapter 3

Evaluation Algorithm

We describe our evaluation strategy for the MTran language in this chapter. In this,

efficient evaluation of MSO query expressions is particularly a difficult problem and

explained in detail. Our MSO query evaluation consists of usual two steps as shown in

Figure 3.1 : (1) compilation of MSO formulae to tree automata and (2) evaluation of n-

ary queries represented by tree automata. In this chapter, we first review known facts

on tree automata in Section 3.1, and then explain about these two steps in Sections 3.2

and 3.3. Finally in Section 3.4, we explain how to integrate the query algorithm into

our evaluation strategy for whole translation templates.

Figure 3.1: Execution Model

3.1 Preliminaries

3.1.1 Queries over trees

First we formalize the concept of queries.

Definition 5. An n-ary query for binary tree over Σ is a function q that maps each

tree t to a set of n-tuples A of its positions.

A tree language over Σ is a set of trees. A query can also be defined in terms of

tree languages.
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Definition 6. Let B = {0, 1}. An n-ary query defined by a tree language L over

Σ× Bn is a function q such that

q(t) = {(v1, . . . , vn) ∈ Pos(t)n |
∃β1, . . . , βn : Pos(t) → B ∀i.∀v ∈ Pos(t).(βi(v) = 1 ⇐⇒ v = vi)

& t× β1 × · · · × βn ∈ L}

where the product t× s of trees is a function defined as (t× s)(v) = (t(v), s(v)).

Intuitively, each βi in the definition above represents selection marks corresponding

to the i-th members of tuples. That is, a query defined by a language L selects a tuple

(v1, . . . , vn) on a tree t if and only if L contains a tree where β1, . . . , βn respectively

mark the elements v1, . . . , vn as 1.

Note that we only consider selection marks that select exactly one node vi in an

input tree. In general, a tree language over Σ × Bn may contain a tree that has no

marked nodes, or more than one marked nodes. But such a language defines exactly

the same query as the language with all ill-marked trees removed.

3.1.2 Tree Automata

An important class of tree languages and queries is defined in terms of tree au-

tomata.

Definition 7. Let Σ be an alphabet. A bottom-up deterministic tree automaton over

Σ is a tuple (Σ, Q, δ, q0, F ) where Q is a set of states, δ : Q×Q×Σ → Q is a transition

function, q0 ∈ Q is an initial state, and F ⊆ Q is a set of accepting states.

Definition 8. A run of a bottom-up deterministic tree automaton on a binary tree

t is a mapping ρ : Pos(t) → Q such that ρ(v) = δ(ρ(v.l), ρ(v.r), t(v)) for each node

v ∈ Pos(t). When v.l or v.r does not belong to the domain Pos(t), we use q0 instead

of ρ(v.l) or ρ(v.r). The run ρ is called accepting if ρ(ε) ∈ F . Note that a run is

uniquely determined from any tree t. In this case, we say that the tree is accepting.

Each tree automaton defines a tree language, which contains all trees accepted by

the automaton. Thus, we can regard a tree automaton over Σ×Bn as an n-ary query

over Σ.

Definition 9. An n-ary query over Σ is regular if there exists a bottom-up determin-

istic tree automaton that defines the query.
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3.2 From MSO to Tree Automata

An MSO formula with n free first-order variables can naturally be seen as an n-

ary query. A formula ϕ(~x) whose free variables are ~x = (x1, . . . , xn) defines a query

q(t) = {~v ∈ Pos(t)n | t ² ϕ(~v)}. It is well-known that there is an exact correspondence

between MSO and tree automata.

Theorem 1. [14, 24] For every MSO formula ϕ(~x) with n free variables, there exists

a bottom-up deterministic tree automaton A over Σ × Bn that defines the equivalent

query. Also for every bottom-up deterministic tree automaton A over Σ × Bn, there

exists an equivalent MSO formula with n free variables.

We evaluate n-ary MSO queries using this equivalence. That is, we first compile

every given MSO formula into an equivalent automaton. We exploit the MONA sys-

tem [18] for this compilation. MONA is a remarkably efficient implementation and is

experimentally shown to work in practice for large formulae, even though this compi-

lation step is well known to take a non-elementary time in the worst case. We make

some experiments in Section 4.2.

One note must be added here about the alphabets Σ. A tree automaton is defined

on top of some fixed alphabet Σ and its run and acceptance is defined only on binary

trees over the Σ. Our algorithm, however, takes encoded XML documents as input

trees, which may have arbitrary set of labels. To absorb this difference, we always

add an extra symbol others to Σ of each automaton, and defines the compilation

of MSO formulae, the run, and the acceptance of the automaton over the alphabet

Σ∪{others}. Any label on input trees that does not belong to Σ is uniformly treated

as an others for these automata.

3.3 N-ary Query Algorithm

In this section, we explain our novel algorithm for n-ary queries. First, in Sec-

tion 3.3.1, we introduce an algorithm that is essentially no different from the binary

query algorithm proposed by Berlea and Seidl, and formalize its extension to general

n-ary queries. Section 3.3.2 explains our improvements to the algorithm.

3.3.1 Basic Algorithm

Definition 6 yields a naive evaluation algorithm for n-ary queries represented by

tree automata. That is, for every n-tuples of nodes of a given input tree t, generate
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the corresponding selection mark βi’s as in the definition and calculate the bottom-up

run of the automaton. If the run is accepting, the tuple belongs to the result set of

the query. There can be |t|n n-tuples where |t| is the size of the input tree, and each

run of a tree automaton takes O(|t|) time. So the total time complexity of this naive

algorithm is O(|t|n+1).

This high time complexity can be improved by sharing intermediate results among

calculations of the runs corresponding to the n-tuples in the following way. Our n-ary

query algorithm assigns a set m(v, q) of n-tuples of nodes to each pair of a node v of

t and a state q of automaton.

Intuitively, m(v, q) is the set of tuples such that, if the tree is marked according to

the tuple, then the bottom-up run on the tree reaches the state q at the node v. We

call such m a marking run of an automaton. Let us consider an example of a ternary

query. If it is the case that (rl, r,⊥) ∈ m(r, q1), this means that the automaton

reaches the state q1 at the node r, when the node rl is selected as the first element,

the node r is selected as the second element, and no node in the subtree rooted at r

is selected as the third element. The ⊥ element represents the last condition.

A marking run can be calculated in a bottom-up fashion. Each m(v, q) is calculated

from that of the children of v, as the union of all products of m(v.l, qL) and m(v.r, qR)

where qL and qR are the states transitable to the state q by appropriate markings.

Formally, we define marking runs as follows. For the sake of efficient calculation, we

define each m(v, q) as a disjoint union of sets ms(v, q), where s ∈ Bn. A sequence of bits

s represents non-bottom elements of the tuples in ms(v, q). That is, if (u1, . . . , un) ∈
ms1...sn(v, q), then ui 6= ⊥ if and only if si = 1 for every i.

Definition 10. A marking run of a deterministic bottom-up tree automaton (Σ ×
Bn, Q, δ, q0, F ) on a tree t is a set of functions m = {ms| s ∈ Bn}. Each ms is a

function of type {l, r}∗ ×Q → 2{Pos(t)∪{⊥}}n

defined as follows. When v /∈ Pos(t),

m0···0(v, q0) = {(⊥, . . . ,⊥)}
ms(v, q) = ∅ if s 6= 0 · · · 0 or q 6= q0

and when v ∈ Pos(t), it is recursively defined as

ms(v, q) =
⋃{

ml(v.l, qL) ∗mr(v.r, qR) ∗ {sing(v, c)} ∣∣ qL, qR ∈ Q, l, r, c ∈ Bn,

δ(qL, qR, (t(v), c)) = q,

(l, r, c) ∈ sub(s)
}
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The tuple sing(v, c) is defined as a tuple (u1, . . . , un) such that ui = v if ci = 1 and

ui = ⊥ if ci = 0. For each s ∈ Bn, we define sub(s) ⊆ (Bn)3 by the set of splitting

(l, r, c) of s such that ∀i.(si = 1 ⇐⇒ exactly one of li, ri, and ci is 1). The asterisk

product ∗ is defined as follows:

S ∗ T = {(u1, . . . , un) | (s1, . . . , sn) ∈ S, (t1, . . . , tn) ∈ T,

(ui = si & ⊥ = ti) or (⊥ = si & ui = ti)}

Using a marking run, we can obtain the query result as:

⋃

q∈F

m1...1(ε, q)

Example

Before we discuss the evaluation algorithm, let us clarify a little complicated def-

inition of marking runs by example. Consider the following tree t over Σ = {a, b}
defined as

:b

l:a r:b

rl:b rr:b

(for the sake of clarity, we present each node by a pair n:L where n is its position

from {l, r}∗ and L is its label from Σ) and the automaton (Σ × B2, Q, δ, q0, F ) with

the set of states Q = {q0, q1, q2, q3}, the accepting states F = {q2}, and the transition

function δ defined as follows:

δ(q0, q0, (s, 00)) = q0 for any s ∈ Σ

δ(q0, q0, (b, 01)) = q1

δ(q0, q1, (b, 10)) = q2

δ(q0, q2, (s, 00)) = δ(q2, q0, (s, 00)) = q2 for any qi ∈ Q, s ∈ Σ

δ(qi, qj , x) = q3 for any other cases

This automaton defines a binary query that selects all pairs of a node and its right child

both labeled b, i.e. (ε, r) and (r, rr) for the above tree. Intuitively, q0 represents the

starting state, and q1 represents the state where the automaton finds a b node as the
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second element. The accepting state q2 means that the automaton finds a desired pair.

When the automaton recognized that the marked pair is not an answer for the query,

it goes to the junk state q3. When the input tree is ill-marked, that is, when more

than one nodes are selected for the same side of the pair, the automaton also moves

to q3. For simplicity of explanation, we here introduce the junk state q3 to construct

an automaton that rejects all ill-marked trees. Note that we do not always have to

introduce such a state for ill-marked trees, since the query defined by an automaton is

not affected by whether or not the automaton accepts ill-marked trees, as we already

stated.

Marking runs on automata representing binary queries consists of four functions

m00, m01, m10, and m11 of the type {l, r}∗ ×Q → 2{Pos(t)∪{⊥}}2 . We first calculate

those functions on leaf nodes {l, rl, rr}. Since the set m00(p, q0) is defined to be

{(⊥,⊥)} for p /∈ Pos(t) and ms(p, q) = ∅ for other s, q, we only need to consider the

case qL = q0 and qR = q0 in the Definition 10. Thus, for each leaf node e we have:

m00(e, q) = {(⊥,⊥) | δ(q0, q0, (t(e), 00)) = q}
m01(e, q) = {(⊥, e) | δ(q0, q0, (t(e), 01)) = q}
m10(e, q) = {(e,⊥) | δ(q0, q0, (t(e), 10)) = q}
m11(e, q) = {(e, e) | δ(q0, q0, (t(e), 11)) = q}

The concrete values of ms is shown in the following tables:

Table 3.1: m00(v, q)

q0 q1 q2 q3

l:a {(⊥,⊥)} ∅ ∅ ∅
rl:b {(⊥,⊥)} ∅ ∅ ∅
rr:b {(⊥,⊥)} ∅ ∅ ∅

Table 3.2: m01(v, q)

q0 q1 q2 q3

l:a ∅ ∅ ∅ {(⊥,l)}
rl:b ∅ {(⊥,rl)} ∅ ∅
rr:b ∅ {(⊥,rr)} ∅ ∅

Table 3.3: m10(v, q)

q0 q1 q2 q3

l:a ∅ ∅ ∅ {(l,⊥)}
rl:b ∅ ∅ ∅ {(rl,⊥)}
rr:b ∅ ∅ ∅ {(rr,⊥)}

Table 3.4: m11(v, q)

q0 q1 q2 q3

l:a ∅ ∅ ∅ {(l,l)}
rl:b ∅ ∅ ∅ {(rl,rl)}
rr:b ∅ ∅ ∅ {(rr,rr)}

For example, the entry m01(rr, q1) = {(⊥, rr)}means that if the first bit is not marked
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for any nodes and the second bit of the node rr is marked, then the automaton reaches

state q1 at the node rr.

Next let us calculate m for the node r:b, which can be constructed from m for

rl:b and rr:b. We demonstrate the calculation of the two cases that are actually

required for obtaining the result of the query. The first case is m11(r, q2):

m11(r, q2) =
⋃
{ml(rl, qL) ∗mr(rr, qR) ∗ {sing(r, c)} |

δ(qL, qR, (b, c)) = q2, (l, r, c) = sub(11)}

Seeing the definition of the transition function δ, there are three choice of qL, qR, and

c to satisfy the condition δ(qL, qR, (b, c)) = q2. Namely, the case {qL = q0, qR = q2, c =

00}, the case {qL = q2, qR = q0, c = 00}, and the case {qL = q0, qR = q1, c = 10}.
Only the last case is significant, since ml(rl, q2) and mr(rr, q2) are empty. Thus, we

have:

m11(r, q2) =
⋃
{ml(rl, q0) ∗mr(rr, q1) ∗ {(r,⊥)} | (l, r, 10) = sub(11)}

= m00(rl, q0) ∗m01(rr, q1) ∗ {(r,⊥)} ∪m01(rl, q0) ∗m00(rr, q1) ∗ {(r,⊥)}
= {(⊥,⊥)} ∗ {(⊥, rr)} ∗ {(r,⊥)} ∪ ∅ ∗ {(⊥,⊥)} ∗ {(r,⊥)}
= {(r, rr)}

The other interesting case is m01(r, q1). There is only one choice of qL, qR, and c in

this case:

m01(r, q1) = m00(rl, q0) ∗m00(rr, q0) ∗ {(⊥, r)}
= {(⊥, r)}

Finally, we show the calculation of m11(ε, q2), which is the result of the query. As well

as in the case of m11(r, q2), we have three choice of qL, qR, and c. This time, two cases

are significant.

m11(ε, q2) =
⋃
{ml(l, q0) ∗mr(r, q1) ∗ {(ε,⊥)} | (l, r, 10) = sub(11)}

∪
⋃
{ml(l, q0) ∗mr(r, q2) ∗ {(⊥,⊥)} | (l, r, 00) = sub(11)}

= m00(l, q0) ∗m01(r, q1) ∗ {(ε,⊥)} ∪m01(l, q0) ∗m00(r, q1) ∗ {(ε,⊥)}
∪m00(l, q0) ∗m11(r, q2) ∗ {(⊥,⊥)}

= {(⊥,⊥)} ∗ {(⊥, r)} ∗ {(ε,⊥)} ∪ ∅ ∗ {(⊥,⊥)} ∗ {(ε,⊥)}
∪ {(⊥,⊥)} ∗ {(r, rr)} ∗ {(⊥,⊥)}

= {(ε, r), (r, rr)}
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Complexity

Naive bottom-up calculation of m still takes O(|t|n+1) time, since we need to

calculate m1...1 that grows up to O(|t|n) in the worst case for all |t| nodes.

Berlea and Seidl has proposed an algorithm for binary queries in [17], based on

the bottom-up calculation of m. They used their formalism of regular queries based

on push-down forest automata, but the same approach is applicable also for simple

tree automata. They took two-phase approach to avoid operating on large m11 sets.

During the first phase, only m00, m01, and m10 are calculated as in Definition 10. In the

second phase, they collect the elements of
⋃

q∈F m11(ε, q) from each node through one

extra top-down run. This is possible since m11(v, Qc) ≡
⋃

q∈Qc
m11(v, q) is definable

in terms of m11(v, l, Q1) and m11(v, r, Qr) for appropriate Q1 and Q2 in the following

way:

m11(v, Qc) ={m00(v.l, qL) ∗m11(v.r, qR) ∗ {(⊥,⊥)} | δ(qL, qR, (t(v), 00)) ∈ Qc}
∪{m11(v.l, qL) ∗m00(v.r, qR) ∗ {(⊥,⊥)} | δ(qL, qR, (t(v), 00)) ∈ Qc}
∪ (other terms that do not contain the m11 of child nodes) ...

= m11(v.r, {qR | ∃qL.m00(v.l, qL) 6= ∅, δ(qL, qR, (t(v), 00)) ∈ Qc})
∪m11(v.l, {qL | ∃qR.m00(v.r, qR) 6= ∅, δ(qL, qR, (t(v), 00)) ∈ Qc})
∪ (others...)

They have concluded that their algorithm runs in O(rt+s) time where t is the size

of input documents and r is the maximum size of m10’s and m01’s – potential matches

– and s is the number of the result tuples. Union operation in the definition of m10

and m01 takes the time proportional to the size of operand sets (r), and the calculation

is repeated t times. The size r of potential matches may be smaller compared to t in

practical cases, but it is O(t) in the worst case. Therefore the total time complexity

is O(t2). As Berlea et al. mentioned (but did not formalize), their algorithm can be

generalized to n-ary queries, and the complexity is O(tn) time. This has been the best

known result for the n-ary MSO query problem.

We have improved this result by optimizing the intermediate set operations and

achieved O(t + s) time complexity for n-ary queries. We give the detail in next sub-

section.
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3.3.2 Our Algorithm

Our strategy is rather straightforward. We calculate the whole marking run in-

cluding m1...1 directly following Definition 10, using lazy set operations.

As we have seen in the previous example, not all intermediate sets are necessary

for query outputs: only the sets associated with a node and a state that can finally

lead to acceptance at the root node are useful. In the previous example, the marking

run m consists of 100 sets – the product of 4 kinds of bits, 5 nodes, and 4 states –

but few of them are actually required to calculate the result of the query. If we could

know whether the value of each ms(v, q) is required for the final result, and avoid

unnecessary calculations, it would improve the efficiency.

Our algorithm delays set operations like unions and products for non-empty sets

until actually enumerating the final result, yet still eagerly does calculations on empty

sets (∅) and unit sets (a singleton set of the tuple whose all elements are the bottom:

{(⊥, · · · ,⊥)}). We show that by this approach the time complexity of n-ary query

reduces to O(t + s), linear in the size of the input and the output.

Partially Lazy Set Operations

We first define lazy set operations required to calculate marking runs. Here is our

implementation of the set data type and operations over it in Objective Caml [25].

Only two operations, union and product, are necessary.¶ ³
type node_set_ne

= Singleton of (node option) list

| Union of node_set_ne * node_set_ne

| Product of node_set_ne * node_set_ne
µ ´
The type of non-empty sets. The node option type is a type that can be either None

(⊥) or Some x where x can be any value of type node. Elements of the sets are length-n

lists of node options. Unions and products are represented as an operation tree that

symbolically represents a set. When it comes to the point where the actual members

of the set are required, the operation tree is evaluated to an explicit form.
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¶ ³
type node_set

= Empty

| UnitSet

| NonEmpty of node_set_ne
µ ´
The type of sets of nodes. To deal with emptiness, empty sets and non-empty sets are

strictly distinguished.¶ ³
let union a b = match (a,b) with

| Empty,s | s,Empty -> s

| UnitSet,s | s,UnitSet -> UnitSet

| NonEmpty s1, NonEmpty s2 -> NonEmpty (Union s1 s2)

let product a b = match (a,b) with

| Empty,s | s,Empty -> Empty

| UnitSet,s | s,UnitSet -> s

| NonEmpty s1, NonEmpty s2 -> NonEmpty (Product s1 s2)
µ ´
Union and product operation. An empty set and a unit set is dealt as a special

case. That is, when one of the arguments is an empty set (a unit set, respectively),

the set operation is explicitly performed at that point. This is to avoid delayed un-

necessary computations of the left operand of the form like Product(LargeSet, ∅)
(Product(LargeSet, {⊥, . . . ,⊥)})). These special treatments are essential for linear

time complexity. Note that each definition of union and product contains one pattern

matching and two applications of data constructors, therefore either operation can be

done in constant time.

We next show the function to convert an operation tree to the actual list of elements

that belong to the set represented by the operations tree.
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¶ ³
(* ’a option list -> ’a option list -> ’a option list *)

let prod_one a b =

match (a, b) with

| (None::al, b::bl) -> b :: prod_one al bl

| ( a::al, None::bl) -> a :: prod_one al bl

| _ -> raise "should not happen"

(* ’a option list list -> ’a option list list

-> ’a option list list *)

let prod sa sb acc =

fold_right (fun a acc ->

fold_right (fun b acc -> (prod_one a b)::acc) sb acc) sa acc
µ ´
The function prod is to calculate the asterisk product exactly as in Definition 10 and

append them to the list acc.¶ ³
(* ’a node_set -> ’a list list *)

let to_list = function

| Empty -> []

| UnitSet -> raise "should not happen"

| NonEmpty s -> let rec f s acc = function

| Singleton vs -> vs::acc

| Union a b -> f a (f b acc)

| Product a b -> prod (f a []) (f b []) acc

in map (map (fun (Some e)->e)) (f s [])
µ ´
The function to list is the main routine, which converts a symbolic operation tree

to an actual set of tuples. Since this function is assumed to be applied to the set that

represents the result of the query, it does not consider the case of UnitSet, which

means that no node is selected. For Singleton, we just create a singleton list. For

Product, we use the prod function that is already defined. For Union operation, just

concatenating two lists will work fine. To see this, let us review the Definition 10. Our

query algorithm always takes the union of two sets in the form

⋃

l,r,c

ml(v.l, qL) ∗mr(v.r, qR) ∗ {(...)}

where ml(v.l, qL) consists of tuples whose all elements belong to the subtree rooted
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at v.l, and mr(v.r, qR) consists of tuples in the subtree rooted at v.r. This means

that the ith element of a tuple in the set ml(v.l, qL) ∗ mr(v.r, qR) belongs to the

subtree of v.l if and only if the ith bit of l is 1. Thus, if l 6= l′ or r 6= r′, the set

ml(v.l, qL) ∗ mr(v.r, qR) and the set ml′(v.l, qL) ∗ mr′(v.r, qR) are always disjoint.

This is why simple concatenation works well.

Complexity

Using these lazy set operations, we can calculate all operation trees corresponding

to ms including m1...1, by simply following Definition 10. As shown in the definition,

all ms for each node v can be constructed as the union of the set of ml(. . . )∗mr(. . . )∗
{v, . . . , v}. Since there are |Q|2 choices for qL and qR, and at most 3n choices for

(l, r, c), using lazy set operations, we can construct the operation trees corresponding

to ms in O(3n|Q|2) steps. Thus, to calculate marking runs for all nodes in the tree

takes O(3n|Q|2t) time, which is linear to the size of the input tree.

To show the total complexity of query evaluation is linear, we next show that the

evaluation of operation trees to obtain the list of elements in the denoted set will

take only linear time with respect to the size of the output list. The following lemma

assures that the to list function can be evaluated in linear time to the size of the set

denoted by the argument.

Lemma 3. Let |s| be the length of the resulting list of operation tree s. The inner

function f s acc in the definition of to list can be evaluated in O(3kn|s|) time where

n is the arity of the query, and k is the maximum number of Product nodes in each

path from the root to a leaf node of the operation tree s.

The maximum number of Product nodes on each path are limited to n in our

algorithm, since we only generate Product nodes between non-empty non-unit sets.

Such products strictly decrease the number of ⊥ in each tuple, and the tuples we

consider here are always n-tuples. Therefore we can derive O(3nn|s|) time from this

lemma. The whole query computation ends in O(3n(|Q|2t + n|s|)) time. When the

query formula is fixed, the values 3n, |Q|2, and n are just constant factors, so we obtain

the complexity O(t + |s|). The proof of Lemma 3 can be done by simple induction on

the structure of the arguments of type node set ne:

Proof. The Singleton case is trivial. For the Union case, by induction hypothesis, (f

b acc) is evaluated in O(3kn|b|) time and then (f a ...) is evaluated in O(3kn|a|)
time. So totally O(3kn|a| + 3kn|b|) = O(3kn|s|) time is consumed. For the Product
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case, by induction hypothesis, (f a []) is evaluated in O(3k−1n|a|) time and then (f

b []) is evaluated in O(3k−1n|b|) time. Since the prod operation is O(n|a||b|), total

complexity is O(3k−1n|a|+ 3k−1n|b|+ n|a||b|) < O(3kn|a||b|) = O(3kn|s|)

Example

Running our algorithm on the previous example in the explanation of basic algo-

rithm, we obtain m11(ε, q2) as the following operation tree

NonEmpty(

Union(

Product( Singleton [⊥;r], Singleton [ε;⊥] ),

Product( Singleton [⊥;rr], Singleton [r;⊥] )

))

instead of a concrete set {(ε, r), (r, rr)}. By evaluating this tree using the to list

function, we get the desired result: [[r; rr]; [ε; r]].

Two features of the algorithm has eliminated unnecessary calculation. Th first

point is its laziness. By delaying the actual construction of the sets, we only need to

calculate the sets contained in the query result m11(ε, q2).

The second point is its eager evaluation for empty and unit sets. As a consequence

of this strategy, resulting NonEmpty trees never contain subtrees that represent empty

sets. Any calculations of sets that are taken a product between an empty set are

skipped in this algorithm.

3.4 Transformation Template Evaluation

Evaluation of gather or visit expressions themselves are clear from the definition

of semantics. For gather expressions, we first obtain the set of nodes that satisfied

the specified query expression. Then for each node in the result, we bind the node

to the specified variable, and recursively evaluate the associated subtemplates. All

resulting trees from subtemplates are concatenated to form the result of whole gather

expression. For visit expressions, we first obtain the query result and for each node

in the input we record information whether the node matched each query. Then

we recursively transform the specified subtree as the vis function in the semantics.

The issue is, how to integrate the query algorithm introduced in Section 3.3 into the

evaluation strategy for whole transformation templates.
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3.4.1 Efficient N-ary Queries Using Context Information

Naive implementation of the semantics in Section 2.3.3 will evaluate each query

as an unary query, by fixing the other variables than the one to be queried in outer

templates. However, as we already discussed in Section 1.2.3, we do not take this

strategy. Instead, we evaluate each query as an n-ary queries, where n is the number

of free variables of the query expression. Consider the following case:

{gather x :: φ(x) :: {gather y :: ψ(x,y) :: ...}}

We evaluate only once the expression ψ(x, y) as a binary query, and obtain a list of 2-

tuples [(vx1, v
y
1) . . . (vxs, v

y
s)] that each tuple satisfies the expression. This list is referred

as an table to obtain the list of all ys for each x bound by the outer template. In this

way, each query is evaluated only once per one input document. Thus, the total time

consumed for queries will be the sum of the time of each query.

This strategy, however, still has some waste. Obviously, we only need the lists of

(vxi , v
y
i ) such that the node vxi satisfies the query expression φ(x). Not all results of

ψ(x, y) are necessary. This could be a problem, since as we proved in the preceding

subsection, each query takes O(3n(|Q|2t+ns)) time that depends on the size of query

result s.

One way to handle this problem is to rewrite the query expression as follows:

{gather x :: φ(x) :: {gather y :: φ(x) & ψ(x,y) :: ...}}

Pushing outer query expressions into inner queries and concatenating them conjunc-

tively. This rewriting keeps the result of transformation unchanged, and reduces the

size of result from inner binary queries. Only the pairs (vxi , v
y
i ) satisfying φ(vxi ) is ob-

tained. Although this rewriting solution indeed reduces the size of s, it causes another

complexity problem. Due to the complication of the query formula from ψ(x,y) to

φ(x) & ψ(x,y), the size |Q| of compiled automaton may increase. The parameter |Q|
affects the total time complexity in quadratic order and cannot be ignored.

We developed a slightly modified version of n-ary query algorithm to remedy this

problem. We now are able to reduces the query result as same as the rewriting approach

while keeping the size of automata unchanged, by using the result of outer queries

(namely, context information) during the query evaluation of inner queries.

We first execute the outermost unary query φ(x) in the same way as explained

in the previous subsection, and obtain the list of results Rx = [ux
1 . . . ux

k]. We next

execute the inner query ψ(x,y) with one modification to the definition of a marking
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run:

ms(v, q) =
⋃ {

ml(v.l, qL)∗mr(v.r, qR) ∗ {sing(v, c)}
∣∣

qL, qR ∈ Q, l, r, c ∈ Bn,

δ(qL, qR, (t(v), c)) = q,

(l, r, c) ∈ sub(s),

∀i.var [i] 6= y&ci = 1 =⇒ v ∈ Rvar [i]

}

where var [i] is the variable that corresponds to the i-th selection mark of an automaton.

In this modified definition, we select each node v as a marked node for variable x only

when v is contained in Rx. Final result obtained in this way thus only contains tuples

(vxi , v
y
i ) such that vxi ∈ Rx. Checking the extra condition (underlined part) does not

incur any additional time complexity blowup, since by processing outer queries earlier

than inner ones, we can always have each Rvar [i] already constructed and its inclusion

can be determined in constant time using any appropriate data structure such as

hash-tables.
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Chapter 4

Experiments

In this chapter, we conduct several experiments of MTran language. In Section 4.1,

we give experiments on expressiveness by writing several transformation templates in

MTran. In Section 4.2, we measure the execution time of several examples in our

system and confirm that it yields an enough performance.

4.1 Examples

In this section, we give several example templates written in MTran and demon-

strate its expressiveness. The first example is a template to generate the table of

contents from a given input XHTML document. The second example is a template

using linguistic queries. The third example is a simplification of RELAX NG schemas.

4.1.1 XHTML Table of Contents

The first example shown in Figure 4.1 is a template to add a table of contents to

a given input XHTML documents. That is, it retrieves the heading elements from

the input document, constructs a table of contents as a tree of itemized lists that

reflect the hierarchical structure of the input, and prepends the table to the original

document. More specifically, the template converts the flat structure of h2, h3, h4,

and h5 in the input to an explicit hierarchy using ul and li itemization. For example,

the template transforms the input

<html>

<head><title>Title</title></head>

<body>

<h1>Title</h1>

<h2>Chapter 1</h2>
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¶ ³
pred subheading(var1 a, var1 b, var2 B, var2 A) =

b in B & a<b & all1 x:(a<x & x in A => b<x);

{visit b :: /<html>/b:<body> :: body[

h1["index"]

ul[ {gather h2 :: h2 in <h2> ::

li[ {gather t :: h2/t :: t} ul[

{gather h3 :: subheading(h2,h3,<h3>,<h2>) ::

li[ {gather t :: h3/t :: t} ul[

{gather h4 :: subheading(h3,h4,<h4>,<h3>) ::

li[ {gather t :: h4/t :: t} ul[

{gather h5 :: subheading(h4,h5,<h5>,<h4>) ::

li[ {gather t :: h5/t :: t} ]

} ]]} ]]} ]]} ]

{gather c :: b/c :: c}
]}

µ ´

Figure 4.1: Example: Table of Contents

<h3>Section 1.1</h3> <p>The quick</p>

<h4>Section 1.1.1</h4> <p>brown fox</p>

<h3>Section 1.2</h3> <p>jumps over</p>

<h2>Chapter2</h2>

<p>the lazy</p>

<h3>Section 2.1</h3> <p>dog.</p>

<h2>Chapter3</h2>

</body>

</head>

to the following XHTML document:

<html>

<head><title>Title</title></head>

<body>

<h1>Index</h1>

<ul> <li>Chapter 1 <ul>

<li>Section 1.1 <ul>

42



<li>Section 1.1.1 <ul/></li>

</ul></li>

<li>Section 1.2 <ul/></li>

</ul></li>

<li>Chapter 2 <ul>

<li>Section 2.1 <ul/></li>

</ul></li>

<li>Chapter3 <ul/></li> </ul>

<h1>Title</h1> (...snip... the same content as the input follows)

</body>

</head>

Let us explain the overall structure, using the transformation template on h3 ele-

ments. The part of the template related to h3 elements is as follows:¶ ³
ul[ {gather h3 :: subheading(h2,h3,<h3>,<h2>) ::

li[ {gather t :: h3/t :: t}
...

]} ]
µ ´
By the query subheading(h2,h3,<h3>,<h2>) we gather all h3 elements that are sub-

headings of already selected h2 elements. For each selected h3 element, we generate

a list item with its content to be the copies of all child elements of the corresponding

h3 element ({gather t::h3/t::t}). We nest similar transformations on h4 and h5

elements inside each list item and constructs the whole hierarchy.

The macro subheading(a,b,B,A) intuitively means as follows:

“The node b belongs to the set B, and it appears after the node a and

before any nodes x in A placed after a in the document order”

Thus, for example, the query subheading(h2,h3,<h3>,<h2>) gathers the nodes h3

labeled <h3> and appearing between the current h2 and the next node labeled <h2>

if such <h2> exists, or otherwise all <h3> nodes appearing between the current h2

and the end of the input. In other word, it gathers all sections (<h3>) in the current

chapter (<h2>).

Although each sub-relation – “a node is labeled B”, “a node appears after another

node in document order”, and so on – is expressible in almost all query languages,

several languages such as XPath fails combining them up into one subheading predi-

cate. This is because XPath cannot express a conjunction of two or more relations and
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an universal quantification in general, while MSO, which has regular expressiveness,

naturally represent such combinations by using logical operators, as we have seen.

4.1.2 Linguistic Queries

The second example is taken from a motivating example of LPath language de-

veloped by Bird, Chen, Davidson, Lee, and Zheng [26]. LPath is an extension to

XPath that supports linguistic queries. In the field of linguistics, parsed sentences are

commonly represented as labeled trees. An example of such tree looks like:

<S id="1">

<NP id="2">I</NP>

<VP id="3">

<V id="5">saw</V>

<NP id="6">

<NP id="7">

<Det id="9">the</Det><Adj id="10">old</Adj><N id="11">man</N>

</NP>

<PP id="8">

<Prep id="12">with</Prep>

<NP id="13"><Det id="14">a</Det><N id="15">dog</N></NP>

</PP>

</NP>

</VP>

<N id="4">today</N>

</S>

The authors of LPath argued that there are mainly three requirements for linguistic

queries: “subtree scoping” that restricts the scope of queries in a specified subtree,

“edge alignment” condition to state whether a node is leftmost (or rightmost) within

a particular subtree, and “immediately follow” relationship. A node q is defined to

immediately follow p when p appears immediately after q in some proper analysis [27],

where a proper analysis is a sequence obtained by several reverse applications of given

grammar productions to a given sentence, e.g., NP saw NP today is an example of

proper analysis for the sentence “I saw the old man with a dog today.”

LPath extends XPath to support the three features above, and enables us to write

many queries that are not expressible in XPath. The authors give the following as test

cases:

Q1 Find noun phrases that immediately follow a verb.
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Q2 Within a given verb phrase, find nouns that follow a verb which is a child of the

verb phrase.

Q3 Find all verb phrases that are comprised of a verb, a noun phrase, and a preposi-

tional phrase.

All these queries are already expressible in our MSO queries without any extensions

as show in Figure 4.2. In LPath implementation, “immediately following” relation was

defined algorithmically and its equivalence to the definition based on proper analyses

needed to be proved. Using second-order variables, we can define the relation directly

in terms of the concept of proper analyses. First we prepare a macro to assert that a

set A is a proper analysis.¶ ³
pred proper_analysis(var2 A) =

all1 x: (x in A <=> ~(A//x | x//A));
µ ´
That is, a proper analysis A is a set of positions such that for any node x, if x belongs

to A then all ancestors and descendants of x do not belong to A, and otherwise there

exists an element of x being an ancestor or a descendant of x. Using this macro, the

“p immediately follows q” relation can be expressed directly through the definition “in

some proper analysis p appears immediately after q.”
¶ ³
pred imm_follow(var1 x, var1 y) =

ex2 A: (proper_analysis(A) & x in A & y in A & x<y

& ~ex1 z:(z in A & x<z & z<y));

pred follow(var1 x, var1 y) =

ex2 A: (proper_analysis(A) & x in A & y in A & x<y);
µ ´
The imm follow relation can be directly read as “in some proper analysis A that

contains both x and y, there exists no z appearing between x and y (i.e., y appears

just after x.” By virtue of the existence of second-order variables, the condition like

“in some proper analysis” is naturally representable as ex2 A: (proper analysis(A)

...) in MSO.

4.1.3 Relax NG Simplification

RELAX NG specification [16] defines several simplification rules for transforming a

RELAX NG schema into a simpler syntax. Although many of the transformations are

easily realizable in traditional XML transformation languages, some of them require a
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¶ ³
pred leftmost(var1 x) = ~ex1 y: nextSibling(y,x);

pred rightmost(var1 x) = ~ex1 y: nextSibling(x,y);

pred lmd(var1 a, var1 d) =

a//d & all1 x:(a//x//d | x=d => leftmost(x));

pred rmd(var1 a, var1 d) =

a//d & all1 x:(a//x//d | x=d => rightmost(x));

pred comp(var1 c, var1 y1, var1 y2, var1 y3) =

lmd(c,y1) & imm_follow(y1,y2) & imm_follow(y2,y3) & rmd(c,y3);

pred Q1(x) =

ex1 v:(v in <V> & imm_follow(v,x) & x in <NP>);

pred Q2(x) =

ex1 vp: ex1 v: (vp:<VP>/v:<V> & follow(v,x) & vp//x:<N>);

pred Q3(x) =

ex1 v: ex1 np: ex1 pp:

(v in <V> & np in <NP> & pp in <PP> & _ in <VP>

& comp(_,v,np,pp));

test[

Q1[ {gather x :: Q1(x) :: x} ]

Q2[ {gather x :: Q2(x) :: x} ]

Q3[ {gather x :: Q3(x) :: x} ]

]
µ ´

Figure 4.2: Example: Linguistic Queries
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more sophisticated approach. We take up their “empty element” rule as an example.

The empty element in RELAX NG schema means an empty sequence of nodes. Here

is an excerpt from their specification:

In this rule, the grammar is transformed so that an empty element does

not occur as a child of a group, interleave, or oneOrMore element or as

the second child of a choice element. A group, interleave or choice

element that has two empty child elements is transformed into an empty

element. A group or interleave element that has one empty child element

is transformed into its other child element. A choice element whose second

child element is an empty element is transformed by interchanging its two

child elements. A oneOrMore element that has an empty child element is

transformed into an empty element. The preceding transformations are

applied repeatedly until none of them is applicable any more.

Without a sufficient expressive query language, achieving the desired result requires

us to repeat the above transformations many times until none of them is applicable

any more. By using MSO’s ability to capture all regular queries, we can write the

condition whether a node should finally be converted to an empty element, as follows:
¶ ³
pred convertible_to_empty(var2 Empty) =

all1 x: (x in Empty <=>

x in <empty>

| x in <group> & all1 y: (x/y => y in Empty)

| x in <interleave> & all1 y: (x/y => y in Empty)

| x in <choice> & all1 y: (x/y => y in Empty)

| x in <oneOrMore> & all1 y: (x/y => y in Empty);

pred emp(var1 x) =

ex2 E: (convertible_to_empty(E) & x in E);
µ ´
Using the predicate, the empty element simplification can be executed as a one-pass

transformation, which is more efficient than repeated transformations.

Figure 4.3 shows the implementation in MTran. We assume that the input is a

valid RELAX NG schema, and that each group and interleave node has exactly

two children. If a node x is convertible to empty, then we output an empty node.

Otherwise, if x is a group or interleave element with an empty child, we translate

the node to the other child that is non-empty. If the node x is a choice node, then
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¶ ³
{visit x

:: emp(x) ::

empty[]

:: (x in <group> | x in <interleave>) & ex1 y:(x/y & emp(y)) ::

{gather y :: x/y & ~emp(y) :: y}
:: x in <choice> ::

choice[ {gather y :: x/y & emp(y) :: y}
{gather y :: x/y & ~emp(y) :: y} ]

}
µ ´

Figure 4.3: empty element simplification

we bring the empty child before, as stated in the simplification rule. Any other node

is kept unchanged (which is ensured by the semantics of visit).

The example above shows the advantage of no-recursion of both MSO and our

semantics of visit expressions. Regular expressiveness of MSO enables us to check

whether a node is convertible to empty by a single query emp(x), without writing

any explicit recursive tree traversals. The semantics of visit expressions eliminates

the necessity to explicitly write down a recursive application of the transformation

in the template for group, interleave, and choice elements. Without our implicit

recursion semantics, we would had to specify that we need to recursively transform

gathered elements y.

4.2 Preliminary Performance Evaluation

The experiments presented in this section are use the three examples we have

presented in the preceding section. All benchmarks are run on Windows XP SP2

operating system on a 1.6GHz AMD Turion processor with 1GB RAM, using MONA

1.4 as a backend compiler of MSO formulae. We have implemented our system in

C++ programming language and compiled in GNU C++ Compiler [28].

Our implementation strategy of transformation templates consists of two steps:

(1) compilation of MSO formulae to tree automata using MONA system as explained

in Section 3.2 and (2) query evaluation and transformation with the compiled tree

automaton. We experiment on each step separately.

Table 4.1 shows the total time spent for compiling all query expressions in each
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TableOfContents 0.970

Linguistic 0.655

RelaxNG 0.553

Table 4.1: Compilation Time (sec)

program. Although compilation of MSO formulae to tree automata is known to take

hyper-exponential time in the theoretical worst case, the experiment shows that at least

for these three examples of XML queries, our strategy yields enough performance.

We measure the performance of our evaluation algorithm using randomly generated

XML documents of different sizes as inputs. Table 4.2 shows the result. We can confirm

that the transformations are also executed in practical time consumption.

10KB 100KB 1MB

TableOfContents 0.038 0.320 3.798

Linguistic 0.063 0.429 4.050

RelaxNG 0.068 0.540 5.684

Table 4.2: Evaluation Time (sec)

4.2.1 N-ary query performance

To demonstrate the efficiency of our n-ary query algorithm and template evaluation

strategy, we compare the performances of same transformation between MTran and

traditional XSLT processors: XT [29] and Xalan-C [30]. For benchmark, we write,

both in MTran and XSLT, a transformation that appends, to the content of each h2

element, the content of its preceding h1 element.¶ ³
pred preceding(var h1, var x) =

h1 in <h1> & h1<x & all1 y:(y in <h1> & y<x => ~h1<y);

{visit x :: x in <h2> ::

h2[ {gather c :: x/c:# :: c} " - "

{gather h1 :: preceding(h1,x) :: {gather c::h1/c:#::c}} ]

}
µ ´
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¶ ³
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="h2">

<h2><xsl:value-of select="."/> -

<xsl:value-of select="preceding::h1[1]"/></h2>

</xsl:template>

<xsl:template match="@*|node()">

<xsl:copy><xsl:apply-templates/></xsl:copy>

</xsl:template>

</xsl:stylesheet>
µ ´

As we explained in Section 3.4.1, MTran processes the query preceding(h1,x) as a

binary query and evaluates it only once. On the other hand, XT and Xalan-C evaluate

the XPath query preceding::h1[1] for each node h2. This difference becomes clear

in the case that the input document contains a large number of h2 elements. Our

O(t + s) algorithm evaluate the binary query preceding(h1,x) in MTran version in

linear time with respect to the size of the input, while XT and Xalan-C evaluate

the unary query preceding::h1[1] in linear time and repeats the evaluation for the

number of h2 times. Table 4.3 and Figure 4.4 show that the evaluation time for the

following form of inputs

<html>

<h1>aaa</h1>

<h2>bbb</h2> <h2>bbb</h2> ... <h2>bbb</h2>

</html>

varying the number of h2 elements from 1000 to 9000. MTran performs the transfor-

mations linearly, while XT and Xalan-C incur quadratic blowup.

(size) 1000 2000 3000 4000 5000 6000 7000 8000 9000

MTran 0.155 0.293 0.433 0.580 0.767 0.898 1.020 1.261 1.430

Xalan-C 0.155 0.416 0.850 1.442 2.242 3.175 4.289 5.579 7.040

XT 1.014 2.537 5.077 8.834 15.657 23.788 32.870 42.483 56.327

Table 4.3: Evaluation Time(sec)
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We designed and implemented an XML transformation language MTran, which

adopts monadic second-order logic formulae as the query language. We showed four

advantages of MSO: expressiveness to capture all regular queries, elimination of re-

cursions, don’t-care semantics that allows us not to mention the nodes irrelevant to a

query, and natural n-ary queries. We have developed a tree automata based algorithm

for efficient processing of n-ary queries. Our algorithm improved the worst case time

complexity from the previously known best result O(tn + s) to O(t + s), linear in the

size of the input and the output. Using MONA system as a backend MSO compiler,

we have implemented the algorithm in our MTran interpreter.

5.2 Future Work

Full-scale XML processing

Many issues still remain as future work. One direction is the full-scale language

design and implementation to support all features of XML documents. Adding sup-

port for namespaces, comments, and processing instructions to current MTran is not

so a difficult problem. The largest theme in this direction is the support of text

transformations. Our current implementation only can copy or remove text nodes,

and has no support for the manipulation of the content of text nodes. Although it is

possible to extend our language with many built-in string manipulation functions, we

plan to investigate more expressive and coherent approach: text transformation based

on MSO. The advantages of MSO like regular expressiveness or don’t-care semantics

also could be applied in the field of text transformation. Moreover, by integrating the
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language for XML and text transformation, uniform manipulation of structured and

unstructured data format (such as, comma separated texts) would be achieved.

Static Type Checking

Static type checking is an important problem for programming languages. Many

researches [5, 31, 32, 33] have been done in the area of type checking for regular

tree languages. We would like to investigate how those results are applicable to our

language. Type checking problem for our distinct semantics of visit expressions is

particularly interesting. Also we wish to study query optimization based on type

information. The MONA system, which we adopted as a backend of MTran language,

exploits a kind of automata optimization based on static information through guided

tree automata [34]. We are considering the use of guided tree automata for optimization

over types.

’Move’ Transformation

As stated in Chapter 1, MSO is well-suited to describe relations between distant

nodes. Our language leverages this advantage. Accumulation of distant nodes is

achieved through gather expressions and simultaneous translation of distant nodes is

realized by visit expressions. Nevertheless it is awkward in our language to describe

a transformation that moves one node to another distant place in the input tree while

keeping the other nodes unchanged.

We are already able to express such transformation through visit and gather

expressions, by visiting and erasing the node to be moved, and on another front visiting

the destination of the move and gathering the node from original position. However,

this approach seems to be redundant that we need to write the same query in two

places (in the visit expression for erasing and in the gather expression). Node

moving transformation is occasionally required in practice, and should be solved in

more concise manner. We plan to investigate the language design to achieve concise

move transformation as further research.
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