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Abstract

Bidirectional transformations provide a novel mechanism for syn-
chronizing and maintaining the consistency of information between
input and output. Despite many promising results on bidirectional
transformations, these have been limited to the context of relational
or XML (tree-like) databases. We challenge the problem of bidirec-
tional transformations within the context of graphs, by proposing
a formal definition of a well-behaved bidirectional semantics for
UnCAL, i.e., a graph algebra for the known UnQL graph query
language. The key to our successful formalization is full utiliza-
tion of both the recursive and bulk semantics of structural recur-
sion on graphs. We carefully refine the existing forward evaluation
of structural recursion so that it can produce sufficient trace infor-
mation for later backward evaluation. We use the trace information
for backward evaluation to reflect in-place updates and deletions on
the view to the source, and adopt the universal resolving algorithm
for inverse computation and the narrowing technique to tackle the
difficult problem with insertion. We prove our bidirectional evalu-
ation is well-behaved. Our current implementation is available on-
line and confirms the usefulness of our approach with nontrivial
applications.

Categories and Subject DescriptorsdD.3.2 [Programming Lan-
guage§ Language Classifications—Specialized application lan-
guages; E.lData Structurels Graphs and networks

General Terms Design, Languages

Keywords bidirectional transformation, view updating, graph
query and transformation, structural recursion

1. Introduction

Bidirectional transformations (Czarnecki et al. 2009; Foster et al.
2005) provide a novel mechanism for synchronizing and maintain-
ing the consistency of information between input and output. They
consist of a pair ofvell-behavedransformationsforward trans-
formation is used to produce a target view from a source, while the
backwardrransformation is used to reflect modification on the view
to the source. This pair of forward and backward transformations
should satisfy certain bidirectional properties. Bidirectional trans-
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applications, including the synchronization of replicated data in dif-
ferent formats (Foster et al. 2005), presentation-oriented structured
document development (Hu et al. 2008), interactive user interface
design (Meertens 1998), coupled software transformatiam¢hel
2004), and the well-knowriew updatingmechanism which has
been intensively studied in the database community (Bancilhon and
Spyratos 1981; Dayal and Bernstein 1982; Gottlob et al. 1988; Heg-
ner 1990; Lechteriirger and Vossen 2003).

Despite many promising results on bidirectional transforma-
tions, they are limited to the context of relational or XML (tree-like)
databases. It remains unresolved (Czarnecki et al. 2009) whether
bidirectional transformations can be addressed within the context
of graphscontaining node sharing and cycles. It would be remark-
ably useful in practice if bidirectional transformation could be ap-
plied to graph data structures, because graphs play an irreplace-
able role in naturally representing more complex data structures
such as those in biological information, WWW, UML diagrams
in software engineering (Stevens 2007), and the Object Exchange
Model (OEM) used for exchanging arbitrary database structures
(Papakonstantinou et al. 1995).

There are many challenges in addressing bidirectional trans-
formation on graphs. First, unlike relational or XML databases,
there is no unique way of representing, constructing, or decom-
posing a general graph, and this requires a more precise definition
of equivalencebetween two graphs. Second, graphs hsivared
nodes and cyclesvhich makes both forward and backward com-
putation much more complicated than that on treeljeneomputa-
tion on graphs would visit the same nodes many times and possibly
infinitely. It is particularly difficult to handle insertion in backward
transformation because it requires a suitable subgraph to be created
and inserted into a proper place in the source.

This paper reports our first solution to the problem of bidirec-
tional graph transformation. We approach this problem by provid-
ing a bidirectional semantics for UnCAL, which is a graph algebra
for the known graph query language UnQL (Buneman et al. 2000);
forward semantics (forward evaluation) corresponds to forward
transformation and backward semantics (backward evaluation) cor-
responds to backward transformation. We choose UnQL/UnCAL
as the basis of our bidirectional graph transformation for two main
reasons.

formations are indeed pervasive and can be seen in many interesting e First, UnQL/UnCAL is a graph query language that has been
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well studied in the database community with a solid foundation
and efficient implementation. It has a concise and practical sur-
face syntax based aelect-wherelauses like SQL, and can be
easily used to describe many interesting graph transformations.

e Second, and more importantly, graph transformations in UnQL
can be automatically mapped to those in termsstofictural
recursionin UnCAL, which can be evaluated intaulk manner
(Buneman et al. 2000); a structural recursion is evaluated by
first processingn parallel on all edges of the input graph and



then combining the results. This bulk semantics significantly

contributes to our bidirectionalization, providing a smart way

of treating shared nodes and cycles in graphs and of tracing
back from the view to the source.

Our main technical contributions are summarized as follows.

e We are, as far as we are aware, the first to have recognized
the importance of structural recursion and its bulk semantics
in addressing the challenging problem of bidirectional graph
transformation, and succeeded in a ndved-stageframework
of bidirectional graph transformation based on structural re-
cursion. We demonstrate that graph transformations defined in
terms of structural recursions (being suitable for optimization (a) A Simple Graph (b) An Equivalent Graph
as have been intensively studied thus far (Buneman et al. 2000))
make backward evaluation easier.

Figure 1. Graph Equivalence Based on Bisimulation

We give a formal definition of bidirectional semantics for Un-
CAL by (1) refining the existing forward evaluation so that it
can produce useful trace information for later backward evalu- 2. UnCAL: A Graph Algebra
ation (Section 4), and (2) using the trace information to reflect
in-place updates and deletions on the view to the source, an
adopt the narrowing technique to tackle the difficult problem
with insertion (Section 5). We prove our bidirectional evalua-

tion is well-behaved. 2.1 Graph Data Model

We have fully implemgnted our bidiregtionalization presented We deal with rooted, directed, and edge-labeled graphs with no
![?] this rﬁ)aper and cotn_f|_rn|1ed the (laffec_tlvelns_ss of"cntjrr] approach ,qer on outgoing edges. They are edge-labeled in the sense that all

rough many non-rivial €xamples, Incuding all thos€ pré- ¢, mation is stored on labels of edges while labels of nodes serve
sented in this paper and some typical bidirectional graph trans- only as a unique identifier without a particular meaning. UnCAL
formations in database management and software engineering.graph data model has two prominent featumarkersands-edges
More gxamples and demos are available on our BiG project Nodes may be marked witlnput and output markerswhich are
Web site’. used as an interface to connect them to other graphs:-éage
depresents a shortcut of two nodes, working likedHeansition in
an automatoh We useLabel to denote the set of labels ard to
denote the set of markers.

Formally, a graphG, sometimes denoted b¥ (v, z.1,0), is @

dWe adopted UnCAL (Buneman et al. 2000), a well-studied graph
algebra, as the basis of our bidirectional graph transformation. We
will briefly review its graph data model and the core of UnCAL.

We consider an operation based approach, which means that th
user explicitly provides editing operations in terms of "rename”,
"delete”, and "insert”. Currently these operations are treated ac-
cording to the order specified by users. It might be challenging to .
produce these operation sequences automatically from the state§uadruple(V, £, 1,0), whereV' is a set of nodesf C V' x
before and after user's modifications on the view, but it is beyond (LabelU{e})xV is asetof edged, C MxV'is aset of pairs of an
the scope of this paper. input marker and the corresponding input node, &d V x M

The forward transformations we consider is based on UnCAL, is a set of pairs of output nodes and associated output markers.
which is bisimulation generic, meaning that the transformation FOr €ach markeéx € M, there is at most one nodesuch that
can't distinguish between graphs that are bisimilar. For example, (&) € I. The node is called arinput nodewith marker&r and
it can't extract “first child of a node”. Extending our model to cope IS dénoted by (&). Unlike input markers, more than one node can
with order is included in our future work. be marked with an identical output marker. They are cadlegbut

Also note that backward transformation is not bisimulation NodesIntuitively, inputnodes are root nodes of the graph (we allow
generic, meaning that two results of updates that are bisimilar do & 9raph to have multiple root nodes, and for singly rooted graphs,
not always lead to bisimilar source. However, this is not necessar- Ve Often use default markérto indicate the root), while an output
ily a limitation introduced by our bidirectionalization, since this N0de can be seen as a “context-hole” of graphs where an input node
asymmetry comes from the expressiveness of conditional expres-With the same marker will be plugged later. We witt&/larker(G)

sion in the original UnCAL graph algebra. Similar argument apply to denote the set of input markers andM_a_rker(G) to denote the
for isomorphic updates. set of output markers in a gragh. In addition, we writelabel(¢)

to denote the label of the edde

Note that multiple-marker graphs are meant to be an internal
a structure for graph composition. In fact, the initial source
) . e . i graphs of our transformation have one input marker (single-rooted)
:'On 2. Then, we clarify the bidirectional properties within our con- 54 g output markers (no holes). For instance, the graph in Fig-
ext and give an overview of our two-staged framework for bidi- o 1(a) is denoted bV, E, I,0) whereV = {1,2,3,4, 5,6}
rectionalizing graph transformations in Section 3. After explaining p _ {(1,a2),(1,b ’3) ’(1’ c.4),(2,3,5), (3 a 5’) ’(4’ c 4)’

how to extend the forward evaluation of UnCAL with trace infor- (5,d,6)} T - {’(&’1)}1 énd707:7{} A A

mation in Section 4, we give a formal definition of bidirectional se- R ’ ’

mantics for UnCAL and prove that it is well-behaved in Section 5. Value Equivalence between GraphsTwo graphs are value equiv-
We discuss implementation issues in Section 6 and related work in alent if they are bisimilar. Please refer to (Buneman et al. 2000) for
Section 7. We conclude the paper in Section 8. the complete definition. Informally, graph; is bisimilar to graph

Outline  We start with a brief review of the basic concept of a 454
graph data model and the structural recursion of UnCAL in Sec-

T This analogy would choose NFA rather than DFA, since we allow multiple
* http://www.biglab.org outgoing edges with identical labels from a node.
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Figure 2. Graph Constructors

G- if every nodezx; in G has at least a bisimilar counterpa
in G2 and vice versa, and if there is an edge fromto y; in G1,
then there is a corresponding edge framto y. in G2 that is a
bisimilar counterpart of;, and vice versa. Therefore, unfolding a

ei={|{l:e}leUe|&i=c|&|()
| edele@e]cycle(e) { constructor}
| $g { graph variable
| ifl=1theneelsee { conditional}
| rec(A($/,%9).e)(e) { structural recursion applicatidh
Il =:=a|$l { label @ € Label) and label variablg

Figure 3. Core UnCAL Language
Example 1. The graph equivalent to that in Figure 1(a) can be
constructed as follows (though not uniquely).

& @cycle((& :={a:{a: &}}U{b:{a: & }}U{c: &})
© (&1 :={d: {}})
© (822 1= {c: &2}))

For simplicity, we often write{a; :
denote{a; : G1} U---U{an : G}

O

G1,... : Gn} to

7a"n

2.2 The Core UnCAL

UnCAL (Unstructured Calculus) is an internal graph algebra for
the graph query language UnQL, and its core syntax is depicted
in Figure 3. It consists of the graph constructors, variables, condi-

cycle or duplicating shared nodes does not really change a graphtionals, and structural recursion. We have already detailed the data

This notion of bisimulation is extended to cope wittedges. For

constructors, while variables and conditionals are self explanatory.

instance, the graph in Figure 1(b) is value equivalent to the graph in Therefore, we will focus ostructural recursionwhich is a power-

Figure 1(a); the new graph has an additiorraldge (denoted by the
dotted line), duplicates the graph rooted at ndgdaend unfolds and
splits the cycle at nodé. Unreachable parts are also disregarded,
i.e., two bisimilar graphs are still bisimilar if one adds subgraphs
unreachable from input nodes.

Graph Constructors Figure 2 summarizes the nine graph con-
structors that are powerful enough to describe arbitrary (directed,
edge-labeled, and rooted) graphs (Buneman et al. 2000):

G == {} { single node graph
| {a: G} { an edge pointing to a gragh
| G1 UG, { graph union}
| & =G { label the root node with an input markpr
| &y { a node graph with an output marker
) { empty graph;
| G1 @G, { disjoint graph unior}
| G1 @G> { append of two graphs
| cycle(G) { graph with cycles

Here,{} constructs a root-only grapkia : G} constructs a graph
by adding an edge with label € Label U {¢} pointing to the
root of graphG, and G, U G2 adds twoe-edges from the new
root to the roots ofG; and G2. Also, & := G associates an
input marker,&, to the root node of, & constructs a graph
with a single node marked with one output markéer, and ()

ful mechanism in UnCAL to describe graph transformations.
A function f on graphs is called a structural recursion if it is
defined by the following equatiohs

f{H = {
f({81:8g}) = e@f($9)
J(8g1U8g) = [f($91)U f($92),

where the expressioa may contain references to variablés
and $g¢ (but no recursive calls tg). Since the first and the third
equations are common in all structural recursions, we write the
structural recursion in UnCAL simply as

f($db) = rec(\($1,89).e)($db).

Despite its simplicity, the core UnCAL is powerful enough
to describe interesting graph transformation including all graph
queries (in UnQL) (Buneman et al. 2000), and nontrivial model
transformations (Hidaka et al. 2009). Some simple examples are
given below.

Example 2. The following structural recursion2b replaces edge
labela with b and leaves other labels unchanged.

a2b($db) = rec(\($1,8g). if $| = a then {b: & }>
else {81: &) ($db)®

(The superscripts are for identifying code positions, which will be

constructs an empty graph that has neither a node nor an edgeimportant in Section 4; they can simply be ignored for now.) Here

Further,G1 & G2 constructs a graph by using a componentwise
(V, E, I andO) union. U differs from & in that U unifies input
nodes whiled does not.® requires input markers of operands
to be disjoint, whileu requires them to be identicalys @ G-

composes two graphs vertically by connecting the output nodes of whereo denotes the root of the graph.

G'1 with the corresponding input nodes 6% with e-edges, and
cycle(G) connects the output nodes with the input nodegzof

to form cycles. Newly created nodes have unique identifiers. We
will give this creation rule extended for our bidirectionalization

is an instance of an execution:

(o) = o

O

¥ Informally, the meaning of this definition can be considered to be a fixed
point (though may not necessarily unique) over the graph, which is again
defined by a set of equations using the three constru¢tors anduU. For

in Section 4.1. The definition here is based on graph isomorphism instance, _the graph_ in Figure 1(a) can be considered to be the fixed point of
(identical graph construction expressions results in identical graphsthe following equations:

up to isomorphism), and they are, together with other operators,
also bisimulation generic (Buneman et al. 2000), i.e., bisimilar
result is obtained for bisimilar inputs.

Groot = {a:{a:Gs5},b:{a:Gs5},c: Gy}
G = {a:{))
Gy = {c:Gu}.



of the argument graph. The following figure should be helpful. The

@ L dashed edges denote the edges that are unreachable from the output
root node.
RER o
@ @ c d e — / AN / — a b a
@ @ b abab(o>e—>e>e) = ; ) = o>e>e>e
®® AR
al la d 2.3 Bulk Semantics of Structural Recursion
e By allowing e-edges, we can evaluate a structural recursion in a
@ a bulkmanner. Consider the structural recursion,
(s5) e rec(\($1,89). e)
d
(ese) (© which is to be applied to an input grajgh In bulk semantics, we
@ After apply bodye independentlyn every edgéa, G1) in G wherea is
5 N Re- the label of the edge and; is the graph that the edge is pointing
i(r?g)] S_eefggzs emov (eka)gezemovmg © mov- to, then join the results witb-edges (as in th@ constructor).
ing Recall the structural recursiaiRd_zc defined in Example 3.
z_dges Applying it to the input graph in Figure 1(a) yields the graph in

Figure 4(a), where each edge franto j in the input graph leads
to a subgraph containing a graph with an edge fi®iy to Fij
in the output graph (where the dotted edge denotes-adge),
and these subgraphs are connected witldges according to the
original shape of the graph. If we eliminate aledges as explained
in Section 3.2, we obtain a standard graph in Figure 4(c).

Figure 4. Bulk Semantics of Structural Recursion in UnCAL

Example 3. The following structural recursion2d_zc replaces all
labelsa with d and removes edges labeled

a2d_zc($db) = One distinct feature of bulk semantics is that the shape of the
rec(A($7,8g). if $/=a then {a:&})? input graph is remembered through additionadges, which will
else if ${=c then {c: &}* be fully utilized in our later bidirectionalization.
else {$1: &%) ($db)7 _ o _ o
Applying the functione2d_zc to the graph in Figure 1(a) yields the 3. Overview: Bldlrectlonallzmg UnCAL
graph in Figure 4(c). O Itis more challenging to bidirectionalize transformations on graphs

than trees, because graphs may contain shared nodes or cycles. We
hall demonstrate that the structural recursion in UnCAL can serve
s the basis to solve this problem. Although structural recursion
was proposed within the context of query optimization, we will
consecutive($db) = show that it plays a crucial role in our bidirectionalization.
rec(A($1,8g).rec(A($1',$¢g).
if$1 = $I' then {result : $g4'}'
else {}? )($9)%)($db)* Bidirectionalization is used to derive backward transformation
from forward transformation. We approach the problem of bidirec-
tionalization in graph transformation by providing a bidirectional

Example 4. The following structural recursiononsecutive ex-
tracts subgraphs that can be accessible by traversing two connecte
edges of the same label.

3.1 Bidirectional Properties

For example, we have

a X semantics for UnCAL; forward semantics (forward evaluation)
a . .
consecutive O/”‘T' — o resut o X e corresponds to forward transformation and backward semantics
Nelexe (backward evaluation) corresponds to backward transformation.

hat th | ve definition of . Before giving our bidirectional semantics for UnCAL, let us
Note that the structural recursive definition afnsecutive uses clarify the bidirectional properties that the forward and backward
graph parametefig” o achieve the transformation. Also note that g, 4ations should satisfy. LeE[e] denote a forward evaluation
structural recursions are allowed to be nested, and inner FeCUrsion ey of expressior: under environmenp to produce a view, and
can refer to outer variables (&5in the example). This enables us Ble](p, G') denote a backward evaluatioput) of expressié)ne

to express thgpin of multiple queries. = under environmenp to reflect a possibly modified views’ to

the source by computing an updated environmenis a set of

Example 5. Although the examples given so far are self-recursive, mappings with form$z — G with a graph (or label)G. The
itis possible to simulatenutual recursiorby returning graphs with  fo|lowing are two important properties:

multiple markers. For instance, the following functiobub
Flelp=G

abab($db) = & @rec(\($1,$9). ﬁ(GETPUT)
(5e0) &zl:z{a:(&gg} Gg)&zQ::{b : &1 })($db) Blel(p, @) =»

! / !/
changes all edges of even distances from the root node aod Blel(p, &) = p G" € RangéF[e])
odd distance edges ta We may consider the marke&; as a Flelp = ¢
mutually recursive call, andbab to consist of two mutual recursive  The (GETPUT) property states that unchanged viéixshould give
functions. The first i&z1, which, at each edge in the original graph, no change on the environmemtn the backward evaluation, while
generates a newedge pointing to the result & at the original the (PUTGET) property states that if a view is modified@® which
destination node. The secondis; that generatels edges pointing is in the range of the forward evaluation, then this modification
to the result of&; from its destination. The result of the whole can be reflected to the source such that a forward evaluation will
expression is defined to be the result of &ag at the root node produce the same vie@'.

(PUTGET)



Figure 5. Generak-edge Elimination Procedure

These two properties are essentially the same as those in (Fos
ter et al. 2005). One problem with tiBUTGET) property is that it
needs to check whether a graph is in the range of forward evalua-
tion, which is difficult to do in practice. To avoid this range check-
ing, we allow the modified view and the view obtained by back-
ward evaluation followed by forward evaluation to differ, but re-
quire both views to have the same effect on the original source if
backward evaluation is applied.

Blel(p.G') = ¢ Flelp' = G”
Ble](p, G") = p’
Thegetin our (WPUTGET) can be considered as an amendment of
the modified viewG’ to G”. Certainly, if the(PUTGET) property
holds, so does theNVPUTGET).
We say that a pair of forward and backward evaluations is

well-behavedf it satisfies(GETPUT) and(WPUTGET) properties.
In the rest of this paper, we will give a bidirectional evaluation

(WPUTGET)

Next, let us consider Stage 1. One fact worth noting is that after
the backward evaluation in Stage 2, the modification to the view in
Stage 1 satisfies themarker preserving property{1) No e-edges
are added or deleted, (2) Markers are not added, deleted, or changed
and (3) Unreachable parts are not modified. This property is very
important in our bidirectionalization, because it not only enforces
the nine graph constructors so that they are invertible, but it also
makes it easy to bidirectionalize structural recursion because there

is a clear correspondence between the input and output graphs.

In the rest of this paper, we will focus on bidirectional graph
transformation in Stage 1.

4. Traceable Forward Evaluation

An UnCAL expression usually specifies a forward evaluation map-
ping a graph database (which is just a graph) to a view graph (in
Section 2). The main purpose of the present paper is tolmiek-
ward evaluationlbackward semantigswhich specifies how to re-
flect view updates to the graph database. For this purpose, we have
to detect how each node of the view is generated, particularly when
it is constructed through connecting input/output markers and re-
movinge-edges, which are no longer in the view. To make the view
more informative, viz.traceable we enrich the original seman-
tics of UnCAL by embedding trace information (like provenance
traces (Cheney et al. 2008)) in all nodes of the view that possibly
includess-edges. In this section, we explain what kind of trace in-

(semantics) for UnCAL, and prove the following theorem, whichis  formation is embedded in the view, and extend the original seman-
a direct consequence of Lemmas 2, 3, and 4 that will be discussedkics for UnCAL expressions to be evaluated into traceable views.

later.

Theorem 1 (Well-behavedness)Our forward and backward eval-
uations are well-behaved, provided their evaluations succeed.

3.2 Two-Stage Bidirectionalization

Recalla2d_zc, which maps the source graph in Figure 1(a) to the
view graph in Figure 4(c). The big gap between the source and the
view makes it hard to reflect changes on the view to the source. Our
idea to bridge this gap was to divide the forward evaluation into two
easily handled stages:

e Stage 1: Forward evaluation (in the bulk semantics) with suffi-
ciente-edges, so that the output graph will have a similar shape
to the input graph, making the later backward evaluation easier.

¢ Stage 2: Elimination of-edges to produce a usual view.

For a2d_zc, Stage 1 maps the source graph to the intermediate

graph in Figure 4(a), and Stage 2 maps the intermediate graph to the |
view graph (Figure 4(c)). By doing so, each stage becomes easier

to bidirectionalize.

First, let us consider Stage 2. Thedge elimination procedure
is simple: new edges are added to skip thelosure (Figure 5).
It is easy to define a well-behaved backward evaluation for this
procedure. First, all nodes in the result gragh,, exist in the
original graph( s, so each node i&',, can be traced t&'s. Second,
although an edge id's may be duplicated i, ((E25,d, E56)
and (E35d, E56) in Figure 4(bf), each edge i, should have
a uniquely corresponding edge @;. Therefore, adding a new
node toG, corresponds to adding a new nodedg, and adding
a new edge ta&, corresponds to adding a new edge between
two corresponding nodes {d,. Similar correspondence holds for
deletions of nodes and edges, and in-place updates of edges.

§ Note that Figure 4(c) does not have this duplication because for this

particular graph, it is safe to glue the source and the destination nodes of an

e-edge together. It is unsafe, if and only if, the source has another outgoing
edgeand the destination has another incoming edge. Here, duplication is
unavoidable.

4.1 Traceable Views

A view is obtained by evaluating an UnCAL expression with
a database. Every node of the view originates in either a node
of the database or a construct in the UnCAL expression, except
when the node is generated through a structural recursion with a
rec construct (in the bulk semantics). Recall that an expression
rec(A($1,8g).e1)(ez) is evaluated by binding variabl&$ and$g
in e; to a part of the evaluation result ef. In this case, a node in
the view may originate not only in the wholec expression but
also a sub-expression in.

A traceable views a view each node of which has information
for tracing its origin. The information, callelace ID, is defined
by

TracelD ::= SrcID
| Code Pos Marker

| RecN Pos TraceID Marker
RecE Pos TracelD FEdge,

whereSrcID ranges over identifiers uniquely assigned to all nodes
of the databasePos ranges over code positions in the UnCAL
expressionMarker ranges over input/output markers, afdge
stands forTracelD x Label x TracelD with a set of labeld.abel.

We now briefly explain the meaning of each trace ID. Let
be a trace ID of a node in a traceable view. Whenis a node
identifier in SrcID, nodew originates in the node assigned by
in the database. Whehnis Code p &n with code positionp and
input marker&n, nodew originates in the subexpressionzain
the UnCAL expression. The mark&m is only required when the
subexpression is given by theor cycle construct. This is because
these constructs yield as maimgdges as input markers. Wheis
eitherRecN p io &n or RecE p io (i1, a,i2), nodeu is generated
through therec construct at the code positign RecN and RecE
stand for what node and edge, respectively, of the argument of the
recursion, the node originates in.

Let us explain these cases through an example where the Un-
CAL expressiona2d_zc in Example 3 is applied to the database
G« in Figure 1(a). The traceable view we want can be ob-



tained from the graplG.iew IN Figure 4(a) by assigning trace
IDs to all nodes. The trace ID assigned to node 1Giflcw iS
(RecN 7 1 & because the node originates in node 1Gf. in
SrcID, which is used as a part of the argument of tiee con-
struct at code position 7 im2d_zc. The trace ID assigned to
node S12 inGview 1S (RecE 7 (Code 2) (1,a,2)) because the
node originates in the-labeled edge from node 1 to 2 6,
in Edge through the graph constructdd : _} at code position
2 in the rec construct at 7 ina2d_zc. When the argument of
the rec construct is also aec expressionRecN and RecE in
the trace ID are nested likeRecN p (RecE p’ ...) ...) and
(RecE p (RecEp’ ...) (RecN ... a,RecN ...)).

A traceable view is denoted by a quadruglé E, I, O) just
like an ordinary UnCAL graph. The only difference is that in
traceable views, trace IDs are assigned to all nodes.

4.2 Enriched Forward Semantics

Traceable views can be computed by a simple extension of the

formally defined by

Fl(rec(A(31,89). en)(ea)) ]p
= composel, . (fwd_eachedge(Ga, p, eb), Ga, M)
whereM = inMarker(es,) U outMarker(ep)
Ga = fﬂea]]p,

where fwd_eachedge and compose,.. are defined in Figure 6.
Intuitively, fwd_eachedge evaluates the body expressianat each
edge( of the argument grapli’, obtained by evaluating, and
returns the set of result graphs. Theompose?, . glues all the
graphs together along the structureff concerning code position
p. Note thatsubgraph(G, ¢) denotes the subgraph to which the
edge( is pointing in the grapld.

Example 6. We will now illustrate the semantics efc through
an example: the structural recursiofd_zc, which is defined with
position information in Example 3, is applied@,.. in Figure 1(a),
and the traceable view is a graph similadg..w in Figure 4(a).
First, Gsrc is bound to a variabl&db. Then, fwd_eachedge

original forward semantics of UnCAL so that tracing information generates a set of pairs of an edge and a ‘local result’ for each

is recorded when a node is created. k&tdenote an UnCAL
subexpressiom at code positiorp. We write p($z) for G when
($z — G) € p. pis naturally used as variable substitution in
UnCAL expressions, e.gep for an expressior. We inductively
define the enriched forward semantig§e”]p for each UnCAL
construct ofe.

Graph Constructor Expressions. The semantics of graph con-

edge inGs.c. The local result is obtained by evaluating the body
of rec underp = {$db — Guo} U {$l — L,8g — G} with
the label L of the edge and a subgraph reachable from the
edge. For example, as the local result for edgen, 5) in Gerc,
edge (Code 2,d,Code 1) with input nodeCode 2 and output
nodeCode 1 is generated because the subexpreséion &} is
used due tdf! = a. The functioncompose?, . glues all pairs
of an edge and a local result after addiRgcN or RecE to

structor expressions is straightforward according to the construc- their nodes. For example, regarding a pair of edge: (3, a,5)

tion in Figure 2. For instance, we have

FI{}"1p = ({Code p}, 0, {(& Code p)}, 0),

and its local result containing edd€ode 2,d, Code 1), the set
Erece contains edgé¢RecE 7 (Code 2) ¢, d,RecE 7 (Code 1) ¢)
where 7 is the code position of the concernsgt, while set

which creates a graph having a single node with the trace ID of Eren contains edggRecN 7 3 & ¢, RecE 7 (Code 2) () and
Code p (indicating the node is constructed by the code at position (RecE 7 (Code 1) (,e,RecN 7 5 &) due to(& Code 2) € [
p), no edges, an input node (the single node itself), and no outputand (Code 1,& € O. The former corresponds to the edge

nodes. As another example, the semantics for the exprasgion

from S35 to E35 ofGyiew and the latter corresponds to two

is defined below to unify two graphs by connecting their input €dges from 3 to S35 and from E35 to 5 Gfew. In this ex-

nodes with matching markers usingedges:
Fl(er Uea)’]p = Flea]p UP Flezlp,

whereU? is a union operator for two graphs concerning posifion
and is defined by

GiUP Gy = (VUV1UV2,EUE1UE2,[,O1U02)
where (Vi, E1,11,01) = G1
(Va, B2, I2,02) = G2
M = inMarker(G1) = inMarker(G2)
V = {Codep &n | &n € M}
E = {(Code p &n,e,v) | (&n,v) € Iy Ul2}
I = {(&n,Code p &n) | &n € M}.

We omit definitions for other constructor expressions.

Variable. A variable looks up its binding from environmemt
Fl(v)*Ip = p($v)

The forward semantics of a condition is defined as

F[(@f 11 = Iz then e; else e2)P]p

[ Flelp if lip=lap
~ \Flez]p  otherwise

It first evaluates the conditional expressian= [>, and with the
result it evaluates either thdhen branch or theelse branch.

Condition.

Structural Recursion. The semantics of a structural recursion is
given bybulk semanticsis reviewed in Section 2.3, which can be

ample, E. is an empty set sincé&'s;c has noc-edges. The sets
Ireen @nd Ogecn Of input and output nodes are obtained with
I = {(&1)} and O = 0, respectively, which are those of
Gere. Hence, Igeen = {(&& RecN 7 1 &} and Ogeen = 0
becauseM = inMarker(ep) U outMarker(e,) = {&}. Here,

“” denotes Skolem function (Buneman et al. 2000) that satisfies
(&x.&y).& = &r.(&y.&) (associativity) an®.&r = &x.& = &

(left and right identity).

b
More concretely, if the source graph is = @@
a2d_zc(s) gives the graph

(RecE 7 (Code 6) (1,b, 2))\ (EecE 7 (Code 2) (1, a, 2))

B Va
(RecE 7 (Code 5) (1,b, QD [RecE 7 (Code 1) (1,a, 2))
d
which is bisimilar to the grap@.. O

5. Backward Evaluation of UnCAL

With traceable views and themarker preserving property (Sec-
tion 3) on the modification of such views, backward evaluation (in
Stage 1) turns out to be simpler for two reasons.

¢ First, the graph constructors become invertible. For instance, if
G = G1 U G2, G is modified toG’, but the modification is



fwd_eachedge(G( g, | ),pe) = {(C,}'[e]]pg) ¢ € E, label(¢) # ¢, pe=pU {81 — label(¢), $g +— subgraph(G, C)}}

Composeg‘)ec (g: (V, E I, O): M) = (VRecE U VRecN s ERecE U ERecN U Ee, TrecN s ORecN)
whereVrece = {RecEpv (| (¢, (Ve, _,_,_)) € G,v eV}

ERecE = {(RecEpuC,a7 ReCEpU C) ‘ (Cv (77 EC7777)) € g7 (u,a,v) € EC}
VreeN = {RecNpv &n |v € V,&n € M}
ERecn = {(RecNp v &mn,e,RecEpu () | &n e M,(( = (v,_, ),(, _,I¢,_)) €G,(&n,u) € I}
U {(ReCEpu<7E7ReCva&rn) I &m € M7 (C = (71771))7(7777770()) € g,(u,&m) € OC}
E. = {(RecNpwv&n,e,RecNpué&n)| (v,e,u) € E,&n € M}
Ireen = {(&1.&n,RecN pv &mn) | (&,v) € I,&n € M}
ORecN = {(RecN p v &n, &n.&m) | (v, &) € O, &mn € M}

Figure 6. Core of Forward Semantics oéc at Code Positiop

e-marker preserving; then, we can follow tracing information, bindings.
e-edges, and marker information timiquelydecompos&:’ to

G andG% such thatGy U G4 = G” holds¥ We will write this (P19, p2) Sum G € p
e Il . . ’ . 1 1,
gﬁlzo(m?ozzg)n adlecompg, ¢, ", and applying it toG” will ={ ($v — mg(G,G1,Go) gv — g)) € p,
R . v — Ga € p2
¢ Second, backward evaluation of a structural recursiarie) is G, if Go=GVG: =Gy
reduced to that of its body(followed by result gluing), because where mg(G, G1,G2) ={ Ga if Gy =G
of the bulk semantics of structural recursion. FalL  otherwise

Backward evaluation greatly depends on what updates are al-¥, unifies each binding byng. If only the binding on the left
lowed on the view. We allow the following three general updates hand side is modified%, = &), or both are consistently updated
on our edge-labeled graphs: (1) in-place updates as modification(G1 = Gz), then the binding on the left is adopted, and vice
of edge labels, (2) deletion of edges, and (3) insertion of edges or Versa. If both are updated to different values, it fails, leading to the
a subgraph rooted at a node. And we accept a sequence of thes&ﬁllure of the.eljltlre backward evaluation. Label variable bindings
updates on the view and reflect them to the source. In the rest ofare treated similarly.

this section, we shall explain the respective backward evaluation = We have omited the definitions for other constructor expres-
for these updates on views. sions, which can be defined similarly.

Variable. A variable simply updates its binding as

5.1 Reflection of In-place Updates B[$v](p, G") = p[$v — G].
In this section, we formally define backward semantics for UnCAL, Here,p[$v < G’] is an abbreviation fo(p \ {$v — _}) U {$v —
where only in-place updates are considered. G'}.

Recall that backward semantige] (p, G’) is used to compute
a new environment from the original input environmerdnd the Condition. The backward evaluation of a condition is defined by
modified viewG’. Like forward semantics, backward semantics B[if l; = I> then e; else es](p, &)

can be defined inductively over the construction of expression. , . / /
Pl it lip=lap Alrpy = l2py

=< py iflipFlpANlipy # laps
FalL  otherwise

, , , wherep| = Ble1](p, G")

Graph Constructor Expressions. Since each constructor is re- ph = Ble2](p, G"),

vertible and is associated with a decomposition function, we can = | ) )

decompose the views of constructor expressions so as to define thavhich is reduced to the backward evaluationeofif I, = Is

5.1.1 Backward Evaluation of Simple Expressions

backward semantidaductively For example, we have holds, and to the backward evaluatioregfotherwise. To guarantee
well-behavedness, we ensure that= [, does not change after
Bl(ex Ue2)?](p, G') = Blex](p, G4) W, Blez](p, Gb) backward evaluation.
where G, - Flelo 5.1.2 Backward Evaluation of Structural Recursion
Ga = Fle2]p
(G1,G3) = decompg, e, (G) Due to the traceable bulk forward evaluation of structural recursion

rec and thes-marker preserving property that retains similarity in
Unlike Foster et al. (2005), we have variable binding, and therefore shape between input and output graphs, backward semantics can
multiple environments produced by backward evaluation of the easily be defined as
operands are merged by, defined below, using an approach Blrec(A($1, $9). en)(ea)](p, G')

similar to that in Liu et al. (2007), which deals with variable = merge(p, €a, Ea

bwd_eachedge(GL, p, e, decomp,...(G', Fa)))
where G, = (_, Ea, _,_) = Flea]p

YGi0,B1.11,01) = Go(vy,B,15,0,), the exact equivalence of two  This definition is easy to understand if we note duality with the def-
graphs, is defined bys = Va A E1 = Ea ATy = I2 A O1 = Os. inition of its forward semantics. Backward semantics first decom-
It would be more precise to write it agecompg, g, in that the poses througdecomp,... the modified result grap&y”’ into pieces
decomposition depends on three arguments. of graphs, which is intuitively an inverse operationcofpose,....




Ce
!

ve

EC

!

decomprec((vla E/7 1/7 O/)a Ea) = (C: (VCI: Eév 12‘7 Oé))

Ol
¢
bwd_eachedge(G, p,e,G’) = {(C,B[[e]](pC,G’C)) ‘ (C,G’C) eg

= {(w

E., label(C) # ¢,

={w| (RecEpw ) € V'},

= {(w1,a, w2) | (RecE pw1 {,a,RecEp w2 () € E'},
IL = {(&n,w) | (RecNpv &n,e,RecEpw () € E'},

,&n) | (RecEpw ¢,e,RecN pv &n) € E'}

s pe=pU {$1 — label(¢), $g — subgraph(G, C)}}

merge(p, ea, Fa, R) = Bleal(p,G4) W, W {0l \ {81 =~ _}\{Sg~ } | (C.pl) € R}

where G,
Eeps

= (UVY, Beps UUEY, I, Oa)
= {(U,E,’U) | (U,E,”L)) € Eﬂ}

vV, B = (VLU (), BL U {(u, p (81, TH(&)})  for each(¢, o) € R, letting (u, _, ) = ¢ and(VZ, BY, I}, OF) = ol (Sg)

Figure 7. Core of Backward Semantics péc at Code Positiop

For every nore edge( € F, in the source argument graph, the de-
composition extracts (possibly modified) subp@ft of G', which
originates at the resul¥¢ of the forward computation on the edge.
Then, inbwd_eachedge, we carry out backward computation of the
body expression;, on each edge and compute the updated environ-
ment ;. Finally, these environments angerged into the updated
environmenty’ of the whole expression. Theerge function does
two pieces of work. First, by combining the informatiop($!) and
pe($g) from the updated environments (anedges existing in the
edgesE, of the source argument graph), it computes the modi-
fied argument grapti’,. Then, we inductively carry out backward
evaluation on the argument expressigrio obtain another updated
environmentip;,. This p,, and allp;-s are merged intp’.

Let us explain in more detail the definitionddécomp,..., which
is the key point of the backward evaluation.

The function first extracts from result graph’ nodesV/
and edgest; that belong to each edgg by matching trace ID
RecE p _ (. Note that if there are nodes that have been freshly

inserted into the view, we also require these nodes to have this
structure, so that these nodes are also passed to the backward evaf—

uation of the recursion body. Input and output nodes with marker
&n are recovered by selecting those pointed from/to “hub” nodes
having structurdrecN _ _ &n. Top-level constructors of trace ID
are erased so that we can inductively compute the backward imag
from the body expression.

Example 7. Recall the simple example in Example 3 where the
b
source iss = 2 _(2), anda2d_zc(s) gives the graplG. If

the graphG' is modified toG’ where the edge labglis updated to
X, thenB[a2d_zc] ({$db — s}, G') returns binding{$db — s’}

X
wheres’ = @@ Therefore, the in-place update of the
change on the view graph is reflected to the source. O

Lemma 2 (Well-behavedness for In-place Updatesj output

5.2 Reflection of Deletion

Deletion in a view is reflected as deletion of the corresponding part
in the source by using trace IDs. Suppose we want to delete the
edge labeled in the view of Example 7. Since both endpoints of
the edge have trace IDs of the foilRecE 7 _ (1, a, 2), we can see
that the selected edge has been generated due to the existence of
the source edgél, a, 2), which is the “corresponding part” to be
deleted in the source.

In general, for a labeled edge = (u,a,v) with a # e, its
corresponding edgeorr(¢) is defined as:

corr((u, a,v)) = (u,a,v) if u,v € SrcID
corr((RecEpu ¢’,a,RecE pv (')
corr((u, a,v))

corr(¢')
= FAIL

if corr((u,a,v)) # FAIL
if corr((u,a,v)) = FAIL
otherwise.

corr(€)

Here, RAIL means failure on finding the corresponding edge.
The first case means that if the edgeés a copy of an edge in the
ource, ther itself is the corresponding edge. The second and the
hird cases are for whefis a result of some structural recursion.

According to the forward semantics eéc in Figure 6, the nor=
edge¢ must have the forngRecE p u ¢’, a, RecE p v ¢’) for some
P Uy Vs and another non-edge¢’. This means thaj consists of an
edge(u, a, v) originating from an evaluation of a recursion-body at
¢’. Hence, for this case, we first recursively trace the corresponding
source of(u,a,v), and if this fails, then try that of’. In other
casescorr fails to find the corresponding source, because it must
be the case that has a trace ID of the fornf€ode _, meaning
that the edge is not derived from the source but from an UnCAL
expression.

Let $db be the source graphGview be the view produced
by F[e]p from a forward computation of expressienwith en-
vironment p, and G%,.,, be a graph fromGyicw With a set of
edgesDous = {(1,...,Cn} removed. Our backward evaluation
Ble](p, Griew) consists of the following three steps.

graphs are modified by in-place updates on edges, then for any

expressione, the two evaluationsF[e]- and B[e](-,-) form a
well-behaved bidirectional transformation, if they succeed.

1. Compute the set of source edges

Din = {corr(¢;) | ¢; is not ans-edgé.

Proof. This statement can be proved by induction on the structure 2. If FAIL € Di,, backward evaluation fails. If it is obtained

of e. For the base case wheeeis a variable, it clearly holds.
Considering the inductive case, (1kifs a constructor expression,

it holds because each constructor is revertible within our context,

(2) if e is a condition, its backward evaluation is reduced to that on

either its true branch or its false branch, so the statement holds by

induction, and (3) ife is a structural recursion, by bulk semantics,

its backward computation is reduced to its body expression, so the
O

statement holds by induction.

successfully without failure, compute
G;rc = p($db) - Din7

whereG — E denotes removal of the edges in the Befrom
graphG.

3. Returnp’ = p[$db «— Gv..] as the result itF[e]p’ = Glicw,
and fail otherwise.



Lemma 3 (Well-behavedness for Deletian)f output graphs are

modified by edge deletion, then for any expressidahe two eval-

uations F[e]- and BJe](-, -) form a well-behaved bidirectional
transformation, if they succeed.

Proof. The (GETPUT) property is clear because of the fact that
Diy = 0 if Douy = 0. For the(WPUTGET) property, it holds
because the third step actually does this check. O

5.3 Reflection of Insertion

Reflection of insertion is much more complicated than that of

the binding of$db and return this environment as our result. The
following lemma shows the correctness of the algorithm.

Lemma 4 (Well-behavedness for Insertion)f output graphs are
modified by edge insertion, then for a structural recursion of the
form rec(e)($db) wheree contains no free variables, then two
evaluationsF[e]- and Ble](-, -) form a well-behaved bidirec-
tional transformation, if they succeed.

Proof. First, the(GETPUT) property clearly holds becaugss re-

inplace-updating and deletion. This is because there are no correturned when no insertions occur. Next, we prove tWePUTGET)
sponding edges in the source for the freshly inserted edges in theProperty by using the following calculation.

view, which requires us not only treatenew information but also
to add it to a proper location in the source graph.

Our idea was to use the Universal Resolving Algorithm (URA)
(Abramov and Qlck 2002), a powerful method of inversion com-
putation, to derive aright inverse of the forward evaluation, and use
the distributive property of structural recursion

rec(e)($g: U$gz) = rec(e)($g:) Urec(e)($g2)

to properly reflect insertion to the source.

In this section, we shall give our algorithm for this reflection,
before we highlight how URA can be used to derive the right
inverse.

53.1
We assume the monotonicity of insertion in that an insertion on the

Insertion Reflection with Right Inverse

view is translated to an insertion on the source rather than other
updating operations. The monotonicity comes from the absence ofbot

isEmpty (Buneman et al. 2000) in our core UnCAL. We only con-
sider insertion on the view graph produced by forward computation
of a variable expression or a structural recursion. For the case of

Insertion for structural recursion, the basic computation unit in Un-
CAL, needs to be carefully designed. In the following, we will fo-
cus on structural recursion, omitting other cases for simplicity.

Before giving our reflection algorithm, we should clarify the
meaning of right inverse. In general, a functibris said to be a
right inverse off if for any x in the range off, f(h(z)) = z holds.
Within our context, for an expressienand a graptG, F°[e] (G)
is said to be a right inverse computation if it retugissuch that
Flelp' = G.

Now, we will return to our reflection algorithm. Léf,. be the
source graphGyiew = F[rec(e)($db)]p, wherep = {$db —
Gsrc ), and Gy, be a graph fromG with new edges inserted.
Notice that it is sufficient to conside$db as the argument of
rec, becaus&db can be bound to other expression. Our backward
evaluation B[rec(e)($db)](p, Guiew) returnsp as the result if
there are no new edges inserted(ni.w; otherwise, it does the
following:

1. Extract the inserted subgragH from G%,,.., such that
Glricw = Giew UG,
2. Compute with right inverse computation:
p1 = F°[rec(e)($db)|(G").
3. Returnp) = {$db — G U p1(8db)} as the result.

The first step of extraction is possible provided that insertion
happens at the root notfe The second step of right inverse com-
putation will be explained in Section 5.3.3. The last step is to update

Flree(e)($db)] ot
{ partial application}:
Flrec(e) (ph($db))]
{ def. of p}, }
Flree(e)(Gare U pi ($dD))] )
{ structural recursion property
Flrec(e)(Gare) Urec(e)(p1(8db)))] p2
{ forward evaluatior}
Flrec(e) (Gare)[ph U Flrec(e) (s} (3db)))] b
{ e does not contain free variabje
Griew U Flrec(e)($db)]p1
{ right inversion}

Gview U G/ O

It is worth noting that we have simplified our discussion in
h the above algorithm and lemma by making it a requirement
that e in rec(e)($db) does not contain any free variables. With
this requirement, our forward and backward evaluation satisfies

variable, this reflection is done in the same way as in Section 5.1.1(’?Ithe strongei(PUTGET) property. In fact, it is acceptable to relax

this condition by allowing: to contain other free variables and the
initial p contains binding of other variables. Then, right inversion
will producep that will be used to update all variable bindings in
addition to$db. In this case,F[rec(e)(Gs:c)]pi may produce a
graph that is different from the original vie@,i.w. In any case,
this different graph will not have an additional effect on the source
when we apply backward evaluation to this new graph. Therefore,
(WPUTGET) always holds.

With this idea, we shall propose an algorithm in which
(PUTGET) property is satisfied without any additional require-
ments. The idea is to utilize the Trace ID information, as will be
discussed later.

5.3.2

The method above satisfies tfiBUTGET) property only if the
variables ofe are disjoint from the variables bound in the initial
environmentp. However, in general, since a transformation may
have multiple variable references, more effort is required to achieve
the (PUTGET) property. We tackle the problem by first locating
where we insert a graph by using trace IDs, and then applying the
URA algorithm (to be described later) to find what graph should be
inserted.

Consider the transformatiared _zc and the view in Example 6.
Suppose we want to insert a graphins rooted at the view node
v = RecN 7 2 & Where should some graph be inserted into the
source to reflect this insertion? The answer is thahwstinsert a
graph rooted at the source nog2lbecause there would be no edge
from v in the view unless there were an edge frdnm the source

Improving Insertion Reflection

** Insertions to non-root positions are possible due to bulk semantics that according to the bulk semantics of structural recursion. Now, our

allows similar treatment for every node.

next task is to find what graph should be inserted under the source



node2. Thatis, we hope to fin@ins such that the following holds.

b
a2d_zc (@@ > Gsins )

Y
[RecE 7 (Code 4) (1,0, QD [RecE 7 (Code 2) (1,4, 2))\

= b a
[RecE 7 (Code 3) (1,b, QD [RecE 7 (Code1) (1,4, 2))\

URA can help us to find suctisins for Gyins. FOr example, if
Gvins is {b : {}}, then URA returnsGsins = {b : {}}. If
Gvins is {d : {}}, then URA returns one of the possibilities,
Gsins = {a : {}} or Gsins = {d : {}}, depending on the

> Gvins

search method used in URA. According to the soundness and the

completeness of URA, the reflection by URA is always correct
in the sense tha(PUTGET) holds, and moreover URA always
returns aGsins if such Ggins exists. Of these, soundness is the
key to insertion reflection satisfyin@uTGET) for general UnCAL
transformations.

In summary, our insertion-reflection algorithm is as follows.

1. Let v be a node under which we want to insert a gréhh,s.

2. By using thetr function in Figure 8, we find the source node
u = tr(v) under which we insert a graph to reflect the insertion.

3. Let G%;.,, be a graph obtained from the view by addingdge
from v t0 Gvins.

4. We find a graphGsins connected fromu by ane-edge, by
applying URA forGl;.. -
obtained from the source by adding an

!

5. We return a grapldr,.
e-edge fromu to Gins.

The soundness of the insertion-reflection algorithm is directly
derived from the soundness of URA.

Lemma 5 (Soundness of InsertionOur insertion-reflection algo-
rithm satisfie{ PUTGET).

Note that we use URA fo€";,., instead ofG.ins. Thus, URA
rejects any insertion dfins that violates PUTGET).
In addition, our insertion-reflection algorithmdsmpletdn the

tr(SrclD)
tr(Code _ _) = FAIL

= SrcID tr(RecN _v _) = tr(v)
tr(RecE _v _) = tr(v)

Figure 8. Tracing Node ID

5.3.3 Right Inverse Computation by URA

Recall that the right inverse computation of an expressi@to
take a graphGview and return ap such thatFe]p = Gview-
We adopt theuniversal resolving algorithn(URA) (Abramov and
Glick 2002), a powerful and general inversion mechanism, to com-
pute p. The basic idea behind URA is to search opeafect pro-
cess tregGlick and Klimov 1993), which represents all possible
computations of an expression, and to find a computation path that
produced the result.

Our right inverse computation consists of three steps.

1. Itlazily enumerates possible evaluation paths by symbolic com-
putation callecheeded narrowingAntoy et al. 1994)'.

2. From the generated evaluation paths, it constructs a table of
input/output pairs of computations.

3. If there is a pair in the table whose outputisi.w, it generates
a substitution (environment) from the path and returns it as the
result.

Example 8. As a simple example, let us see how we fimduch
that

Fla2d_zc($z)]p = Gview
whereGyiew = {d : {}}. We searctp by symbolic evaluation
of a2d_zc($z). To evaluaten2d_zc($z), we unfold$z and recur-

sively evaluatez2d _zc, i.e., a structural recursion. There are many
ways to instantiat§z such as

$z > {}, 8z — {8k : Sz}, 8z — {8k : $a1, 8k : Sz}

If we choose$z — {}, the computation finishes, yielding a table
consisting of an input/output pa{{}, {}). Since this table does
not contain a pair whose output @s,i.., we continue searching.
Assume that we choostr — {$4 : $z:1}. Thena2d_zc($z) is
unfolded to(if $/; = a then {d: & else (if $/; = c then {¢:

&} else {31, : &})) @ a2d_zc($z1). As evaluation gets stuck here
because of a free variab#, in theif condition, we find a suitable
$01 to resume the evaluation. If we choo8g +— a, then the
expression is reduced {@l : & @ a2d_zc($z:) and input/output
pair({a: {}},{a: {}}) is obtained by choosin$z; — {}. Since

sense that, if there exist some source insertions to reflect the viewGview = {d : {}}, we gather all bindings along this computation

insertion under some conditions, the algorithm will find one of
them.

Lemma 6 (Completeness of Insertian)_etv be a node such that
tr(v) # FAIL. For any source graplt?, we can insert any graph

and return the following environment as the result.

{3z = {a: {}}}

Figure 9 shows part of a perfect process tree in our right-inverse
computation: the left is the tree and the right is a table of a pair

into its view if there exists a source insertion that reflects the view of input/output graph templates (it is more general than a pair of

insertion andv still occurs in the view of the insertion-reflected
source.

Recall that we only consider insertion on the view graph pro-

duced by forward computation of a variable expression or a struc-

tural recursion, which is expressed tryv) # FAIL. This lemma

input/output graph instances, as we discussed above). Note this tree
is a variant of SLD-resolution trees (@k and Sgrensen 1994).
O

To use URA effectively for our right inverse computation of
UnCAL, we define asmall-step semantider UnCAL such that a

can be proved using the property of trace IDs stating that, to insert perfect process tree can be constructed though these small steps.

a graph rooted at view nodg we must insert a graph rooted at
source noder(v). By induction on the trace ID of, we can show

that, if there is an edge from, it must be the case that there is an
edge frontr(v), which is implied by the property of trace IDs. Note

The only non-standard feature of this semantics is that we use
memoization to avoid infinite loops probably caused by cycles in

the source graph (See Appendix of (Hidaka et al. 2010) for details).
In addition, we provide a Dijkstra-searching strategy to enumerate

that Gvins has no edge to the original view. However, this is not a  a|| the possible evaluation paths so that a solution can always be

restriction since if there is a crossing edge pointing to a subgraph

of the original view, we can duplicate the subgraph and integrate it Tt The same notion is callegriving (Gliick and Klimov 1993; Gick and

to Gvins SO that the edge can be eliminated.

Sgrensen 1994) in (Abramov andi@k 2002).



Input/Output Pairs
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Figure 9. URA for a2d_zc and Enumerated Input/Output Pairs with Constraints (nodes without branching have been contracted)

found if one exists. The two heuristics we use to design the cost edges, which may harm backward evaluation. Toward prudently re-
function are: moving e-edges that are suitable for backward evaluation,ssur
removal algorithm glues source and destination nodesasflong

e We use a (weighted) size of graphs (to be inserted into the as bisimulation equivalence is not violated.

source) as a cost function in the Dijkstra-search.

¢ For the weighted size, the depth (the length of the path) has
more weight than the width (the number of paths). This strategy
works nicely forconsecutive in Example 4.

Optimization by fusion transformation Note that the backward
evaluation ofrec(e1)(rec(ez)(es)), a composition of structural
recursions, requires to generate intermediate result of backward
transformation, which is very expensive. This can be avoided by
Moreover, we show that a suitable binding to continue evaluation of fusing the two structural recursions into one. We have imple-
conditional expressions can easily be found for our core UnCAL, mented this based on the fusion rule (Buneman et al. 2000): if
because the conditional part of a conditional expression is in the e; (a, G) does not depend o6 then rec(e;)(rec(ez2)(es)) =
simple form ofa; = a2. rec(rec(e1) o ez)(e3). With auxiliary rewriting rules such as

e1 @ ez = e; for e; that produces no output nodes, 30% and 50%
6. Implementation and Experiments gf CPU time redu_ctio_ns are respectively achieved for _forward e}nd

ackward execution in Customer20rder composed with selection,

The prototype system has been implemented and is available on our30% and 65% reductions for simpler examples that appeared in the
BiG project Website. In addition to all the examples in Buneman evaluation for unidirectional transformation (Hidaka et al. 2009).
et al. (2000) and in this paper, we have tested three non-trivial These experiments are for in-place updates, but similar reduction
examples, demonstrating its usefulness in software engineering anctould be achieved for other updates.
database management.

e Customer20rderA case study in the textbook on model-driven 7.  Related Work

software development (Pastor and Molina 2007). Bidirectional transformation has been discussed as view updat-
* PIM2PSM A typical example of transforming a platform inde-  ing problem in the database community. Bancilhon and Spyratos
pendent object model to a platform specific object model. (1981) proposed a general approach to the view updating problem.

They introduced an elegant solution based on the concept of a con-
stant complement view that captures the information in the view but
not in the original database. Their idea was not only applied to re-
All of these have demonstrated the effectiveness of our approach inlational databases (Hegner 1990; Lechtager and Vossen 2003)
practical applications. but also to tree structures (Matsuda et al. 2007). Constant comple-
In our implementation, we carefully treatedges introduced ~ ment views satisfy very strong bidirectional properties at the sac-

during operations related to markers, and retrieval of edges or rifice of the number of reflectable updates. Although such strong
nodes of interest, which greatly affect performance. Poor treatment properties are nice for some applications (Hegner 1990), they are
would hinder large-scale UnQL queries to evaluate in bidirectional too strong for our purpose, i.e., model transformation in software
modé? in a reasonable amount of time. Speed-up of several orders €ngineering. Recent work by Fegaras (2010) propagates updates
of magnitude has been achieved since our initial implementation 0N XML views created from relational databases. It supports dupli-
due to the above and the following optimizations. cates but detects view side effects at both compile and run time.

In the area of programming languages, view updating has been
Reduction in number of-edges As mentioned in the UnQL pa-  studied asbidirectional transformation Foster et al. (2005) pro-
per (Buneman et al. 20009;edges are generously generated dur- posed the first linguistic approach to solving this problem. They
ing evaluation, especially imec. This slows the evaluation pro-  developed some domain specific languages to support the develop-
cess due to the increase in input size. Removiregiges during ment of bidirectional transformation on strings and trees. Bohannon
evaluation has no harm on forward semantics because of bisimu-et al. (2006) applied these techniques to relational databases, mak-
lation equivalence. However, sineeedges play an important role  ing use of functional dependencies in relations to correctly prop-
in backward evaluation, they are not freely omitted in our bidirec- agate updates. However, their approach is limited to strings, trees
tional settings. Moreover, a straightforward implementation of the and relations, and is difficult to apply to graph transformation due
removal algorithm (Buneman et al. 2000) may introduce additional to graph-specific features such as circularity and sharing.

Within the context of software engineering, there has been sev-
 Note that we preserve every result of forward computation in the bidirec- €ral works on bidirectional model (graph) transformation (Ehrig
tional mode. et al. 2005; Jouault and Kurtev 2005; OMG 2005; @ctand Klar

¢ Class2RDBA non-trivial benchmark application for testing the
power of model transformation languages (Bezivin et al. 2005).




2008; Stevens 2007), which can deal with kinds of graph structures.
However, they lack a clear formal bidirectional semantics and there

has not yet been any powerful method of bidirectionalization that

can be used to automatically derive backward model transforma- R.

tions from forward model transformations, so that both transforma-
tions can form a consistent bidirectional model transformation.

The concept of structural recursion is not new and has been
studied in both the database (Breazu-Tannen et al. 1991) and the
functional programming communities (Sheard and Fegaras 1993).
However, most of these have focused on structural recursion over
lists or trees instead of graphs. Examples include the higher order

functionfold (Sheard and Fegaras 1993) in ML and Haskell, and the
generic computation pattern calledtamorphisnin programming
algebras (Bird and de Moor 1996). UnCAL (Buneman et al. 2000)

demonstrates that the idea of structural recursion can be extended®

to graphs, but the original focus was on the optimization of query
fusion rather than bidirectionalization.
Our work was greatly inspired by interesting work on efficient

graph querying (Buneman et al. 2000; Sheng et al. 1999). Un-
like trees, graphs involve subtle issues on their representation and¥-

equivalence. The use of bisimulation and structural recursion in
(Buneman et al. 2000) opens a new way of building a framework for
both declarative and efficient graph querying with high modularity

and composability. This motivated us to extend the framework from
graph querying to graph transformation and apply it to model trans-
formation (Hidaka et al. 2009). This work is a further step in this

direction to extend it from unidirectional model transformation to

bidirectional model transformation.

8. Concluding Remarks

This paper reports our first attempt toward solving the challeng-
ing problem of bidirectional transformation on graphs. We show

that structural recursion on graphs and its unique bulk semantics

play an important role not only in query optimization, which has

been recognized in the database community, but also in automatic
derivation of backward evaluation, which has not been recognized s
thus far. As far as we are aware, the bidirectional semantics of Un-
CAL proposed in this paper is the first complete Ianguage-baseds

framework for general graph transformations.
Future work includes extending the framework from unordered

graphs to ordered graphs, introducing graph schemas to provide

structural information for more efficient bidirectional computation,
an efficient algorithm for checking updatability, and more practical
applications of the system for bidirectional model transformation
in software engineering.
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