The Complexity
of Tree Transducer

Output Languages

FSTTCS 2008, Bengaluru

The Univ. of Tokyo KaZUhirO Inaba
NICTA, and UNsw Sebastian Maneth

" I
“Complexity of Output Languages”

m Given...

A language
L & Ts (Trees over 2)

A relation (nondeterministic translation)
TE T:XT, (from Tsto Ty)

m \What is the complexity of the language
(L) € T)?

(l.e., fort € T,, how is it computationally hard
to determine whether t € 1(L) or not?)

" A
Classic Results

m 7. Program of Turing-Machine
Undecidable

m L : Regular String Language
m T: Nondeterministic Finite State Transduction
1(L) is regular!

s 2> The membership of 7(L) is solved in
O(n) time, O(1) space

Corollary: for T Einitely Many Compositions of
Nondeterministic FST, 1(L) is regular

" A
Trees?

m L : Regular Tree Language

m 1. Finitely Compositions of
Nondet. Finite-State Tree Transducers

Beyond Regular Tree Language

m (Intuitively...) Due to Copying
1(t) — x(t, t) is an instance of FSTT

In DSPACE(n) [Bakerl978]

m i.e., Deterministic Context-Sensitive

"
Recent Result {Maneth2002, FSTTCS]

m L : Regular Tree Language
m T: Finite Compositions of
Total Deterministic Macro Tree Transducers

== Tree Transducers extended with “accumulating
parameters” for each state

In DSPACE(n)

m Still, Deterministic Context-Sensitive

" J
Today's Target!

m L : Reqular Tree Language

m T: Finite Compositions of
Nondeterministic Macro Tree Transducer

Is it still context-senstive? — Yes. NSPACE(n)
What about the time complexity? — NP-complete

» I
Outline

m What is/Why Macro Tree Transducers?

m Review of the Proof for Deterministic Case
m “Garbage-free” Lemma
m “Translation Membership” Problem

B Summary

" A
Macro Tree Transducer (MTT)

m Q : Finite Set of States

m gO: Initial State

m 2 : |[nput Alphabet

m A : Output Alphabet

m R : Set of Rewrite Rules of form:

<q, O(X1e s X)>(Vipenes Yy) 2 T
where r ;== 0(r, ..., r) | <q, x>(r, ..., 1) |y,

Example of an MTT

= <q0, a(x)>()
= <q0, b(x)>()

= <ql, a(x)>(y)
= <ql, b(x)>(y)

=2 1(<ql, x>(a(e)), <q2,x>())
= 1(<ql, x>(b(e)), <q2,x>())

2 <ql, x>(a(y)))
=2 <q1, x>(b(y)))

m <ql, e>(y) 2y ®

= <2, a(x)>() 2 a(<q2,x>()) b (@
v e sV ® @ ®
<q0, a(b(b(e))>() ::>
BEE S S G O
 f(<q1,e>(a(a(a(e))), <q2,a(e)>()) — ...

" J
(Choice of Semantics)

m Functional Programming + Laziness +
Nondeterminism ©

m \We take the Runtime-Choice Semantics:
<coin,a>—>0]|1
<twocoins, a>(y) > c(y, V)
<twocoins, a>(<coin,a>()) >*
{ ¢(0,0), c(0,1), c(1,0), c(1,1) }

m Because of its composability: MTT ; LT € MTT

MTT*(REGT)
= PTT*(REGT)
= ATT*(REGT)
= ... Ol-Hierarchy

DIMTT*(REGT) Context Free

*
|O-Hierarchy T*(REGT)

MSOTT*REGT)
& >

"
Review:
DSPACE(n) Membership for Det. MTTs

m Given a (fixed) pair of
Input regular language L and

Composition sequencerT, ; ... ; T, of
total deterministic mtts

m and a tree t,

m Howcanwetest t e (1,;...;T1,)(L)
In linear space wrt [t|?

B
Review:

Guess the inputs € L
Calculate (1, ; ... ; 1,)(S)
If (1,; ...;T,)(S) =t, then tis in the ol

DSPACE(n) Membership for Det. MTTs

Otherwise, try another input tree s

_

Is this a possible
output from
Ty een s T 7?

\

"
Review:
DSPACE(n) Membership for Det. MTTs

m |n order to carry out the algorithm in DSPACE([t]) ...

The sizes |s|, [s4], [Ssl, ---, |S,| Must be linearly bounded by |t
= i.e., there must be a constant ¢ independent from t s.t. |s| = clt|

Each step 1 of the computation must be done in linear space

The translation must
have
'no garbage’!

e YeY

"
Review:
DSPACE(n) Membership for Det. MTTs

m ‘Garbage-Free’ Lemma

For any input language L and mttst1, ..., 1n, there
exists L’ and 7'1, ..., T'n such that

(Ty5..Ta)(L) == (Tg;..5TR)(L)
and every T, is ‘non-deleting’ (|[in| = 2|out]|)

m Linear Time (and Space) Computation
For any total deterministic mtt tand a tree s,
1(s) can be computed in time O([s| + [1(s)])
(already known as a folklore result)

" S
NSPACE(Nn)/NP Output Membership for
Nondeterministic MTTs

m Guess the inputs € L
and all the intermediate trees s, ..., S,.1

m Check whether

(SiS)ETy, (S1S)ETy, vy (Spay D) ET,
m Ifitis, then tis in the output language!
m Otherwise, try another s, s,, ..., S, 4

_n =l])

ATATA-ATA

Key Lemmas

m ‘Garbage-Free’ Lemma—Nondet. Version

m NP/NSPACE(n) “Translation Membership”
for a single mtt translation

"
Key Lemma (1):
‘Garbage-Free’ Lemma—Nondet. Version

-)
i Decompose 1,
m Basic Idea to ‘deleting part’ D
“Factor out” the deletion and ‘nondeleting’ T,

% /
) —) L Associativit J

T T ==Tp 5 (DT)) % d
==(1,;D); T 2}% T, With D J

== P T

Three Types of Deletion

Lemma:
3 , If no erasing, input-deleting, or
m ‘Erasure skipping rule is used during the
<q,0>(Y, Vo) 2 VY4 computation, then |in|] = 2|out]|

No new output node is generated at this o node. Only
returning its parameter.

m “Input-Deletion”
<, 0(x1, X2)>() 2 0(<q, X;>())
Discarding the “x," subtree!

m “Skipping”
<q, 0(x)>() 2 <q, X,>()

Occurs only at monadic node. No new output is
generated here. Just going down to its child node.

" S
Eliminating
The Three Types of Deletion

m Achieved by heavily manipulating the rules
For detalls, please consult the paper

m One of the difficulties compared to the
deterministic case: Inline-Expansion

<gq,a>(y) =2V
<q, b(X1,X,)> =2 c(<p,X;>(<q,X,>(e)))

(Assume we know that ‘b”s child is always ‘a’)

<q, b(Xy,X5)> =2 c(<p,x;>(€e))

" I
With Nondeterminism,
Inline-Expansion is Not Easy

m <
m <C

m <

,a>() =—>e
,a>() >f
, b(X)>() =2 <p,x>(<q,x>())

m <p,a>(y) —2c(y,y)

or

<q,
— <p,a>(e) — c(e, e) B <(: b(X)>() 9 <p1X>(f)

<q, b(a)>()
— <p,a>(<q,a>())

— ¢(<q,a>(), <q,a>())
—c(e, f)

m<g,a>() =—2>e
Different m<g,a>() >f

b(@)>() m <q, b(xX)>() 2 <p,x>(e)

 <p,a>(f) — o(f, f) m<p,a>y) -=2cyy)

" I
Solution:
*“MTT with Choice and Failure”

m \We have extended MTTs with “inline”
nondeterminism

Allows inline-expansion for free!

Actually, we prove the output language
complexity for mtt-cfs

m<g,a>() =—2>e
<q,b(a)>(()(o) m<g,a>() —>f
— <p,a>(*+(e,
Celaen seh) | ®<g, b(x)>() > <px>(+(e, f))
—clef) m<p,a>(y) -=2>ci,y)

"
Key Lemma (2):
“Translation Membership” of single T;

m Given a pair (s, S;) of trees,
we can determine whether (s, 4, S) € T,
In linear-space & polynomial time wrt |s; ; |+|s|]
In nondet. Turing machine

m Naively Applying the folklore deterministic
computation takes O(|s;; |+ |1(s;;)|) time/space
- New |dea is Necessary

“Translation Membership” of single T;

OK. Similar
decomposition
works also for
Nondet. MTTs

Bad. Nondet.
Linear MTTs may
read each node
multiple times

on of an MTT Into Lmear
A X; OCCUrs at most once in

= Naively Apply)

Need More
Sophisticated
Compression!

.\ that deterministic linear MTTs read
each input no ‘e at most once,

...which allowsNp compress the output tree as a DAG
for both saving space and sharing computations

"
Example: Linear Nondet. MTT
Reading Some Node Twice

m<g, b(x1,x2)>() =2 <p,x1>(<q,x2>())
m <, a>() 2> €
m <, a>() > f

m <p, a>(y) 2 a(y, y)

" S
Solution: Compression
by Context-Free Tree Grammar

m The set all outputs 1,(s;;) ofan MTT can
be represented by a CFTG of size
proportional to |s; ;| [MBO4]

]

A—@:A

Ti(Si-1)

m Navigation (up,1stchild, nextsibl) on the compressed
representation is efficient for linear mtts

Summary

m Composition sequence 14 ; ...; T, of mtts can be
converted to an equivalent ‘garbage-free’
composition

m Translation Membership of any mttis in
NP/NSPACE(n)

m - Altogether, the output language complexity of
mtt-compositions is NP/NSPACE(n)

Corollary: Ol-hierarchy, PTT*(REGT), ATT*(REGT),
... iIs in NP/NSPACE(n)

m Current Status (Unpublished): NSPACE(n)->DSPACE(n)

