The Complexity of Tree Transducer Output Languages

FSTTCS 2008, Bengaluru

The Univ. of Tokyo Kazuhiro Inaba NICTA, and UNSW Sebastian Maneth

"Complexity of Output Languages"

- What is the complexity of the language $T(L) \subseteq T_{\Delta}$?
 - (i.e., for $t \in T_{\Delta}$, how is it computationally hard to determine whether $t \in \tau(L)$ or not?)

Classic Results

- T: Program of Turing-Machine
 Undecidable
- L : Regular String Language
 T: Nondeterministic Finite State Transduction
 T(L) is regular!
 - → The membership of τ(L) is solved in O(n) time, O(1) space

□ Corollary: for τ∈ <u>Finitely Many Compositions</u> of Nondeterministic FST, τ(L) is regular

Trees?

L : Regular Tree Language T: Finitely Compositions of Nondet. Finite-State Tree Transducers

Beyond Regular Tree Language

(Intuitively...) Due to Copying □ τ(t) → x(t, t) is an instance of FSTT

□ In DSPACE(n) [Baker1978]

i.e., Deterministic Context-Sensitive

Recent Result [Maneth2002, FSTTCS]

- L : Regular Tree Language
- T: Finite Compositions of Total Deterministic Macro Tree Transducers
 - == Tree Transducers extended with "accumulating parameters" for each state
 - □ In DSPACE(n)
 - Still, Deterministic Context-Sensitive

Today's Target!

 L : Regular Tree Language
 T: Finite Compositions of Nondeterministic Macro Tree Transducer

Is it still context-sensitive? – Yes. NSPACE(n)
 What about the time complexity? – NP-complete

Outline

What is/Why Macro Tree Transducers?

Review of the Proof for Deterministic Case
"Garbage-free" Lemma
"Translation Membership" Problem

Summary

Macro Tree Transducer (MTT)

- Q : Finite Set of States
- q0: Initial State
- Σ : Input Alphabet
- Δ : Output Alphabet
- R : Set of Rewrite Rules of form:

 $< q, \sigma(x_1, ..., x_k) > (y_1, ..., y_m) \rightarrow r$ where $r ::= \delta(r, ..., r) \mid < q, x_i > (r, ..., r) \mid y_i$

Example of an MTT

<q0, a(x)>()<q0, b(x)>()

→ f(<q1, x>(a(e)), <q2,x>()) → f(<q1, x>(b(e)), <q2,x>())

<q1, a(x)>(y)< <q1, b(x)>(y)

<q1, e>(y)

→ <q1, x>(a(y)))
→ <q1, x>(b(y)))
→ y

- <q2, a(x)>()
- → a(<q2,x>())
 → b(<q2,x>())
 → e

<q0, a(b(b(e))>() $\rightarrow f(<q1, b(b(e))>(a(e)), <q2, a(e)>()) \\ \rightarrow f(<q1, b(e)>(a(a(e)), <q2, a(e)>()) \\ \rightarrow f(<q1, e>(a(a(a(e))), <q2, a(e)>()) \rightarrow \dots$

(Choice of Semantics)

- Functional Programming + Laziness + Nondeterminism [©]

- Given a (fixed) pair of
 Input regular language L and
 Composition sequence₁; ...; T_n of total deterministic mtts
- and a tree t,
- How can we test $t \in (T_1; ...; T_n)(L)$ in linear space wrt |t|?

In order to carry out the algorithm in DSPACE(|t|) ...
 The sizes |s|, |s₁|, |s₂|, ..., |s_n| must be linearly bounded by |t|

• i.e., there must be a constant c independent from t s.t. $|s| \leq c|t|$

Ξ Each step τ of the computation must be done in linear space

Garbage-Free' Lemma

□ For any input language L and mttst1, ..., tn, there exists L' and t'1, ..., t'n such that (T₁;...;T_n)(L) == (T'₁;...;T'_n)(L') and every t'_i is 'non-deleting' (|in| ≤ 2|out|)

Linear Time (and Space) Computation

 For any total deterministic mtt rand a tree s, τ(s) can be computed in time O(|s| + |τ(s)|) (already known as a folklore result)

NSPACE(n)/NP Output Membership for Nondeterministic MTTs

Guess the input s ∈ L and all the intermediate trees s₁, ..., s_{n-1}
Check whether (s,s₁)∈T₁, (s₁,s₂)∈T₂, ..., (s_{n-1}, t) ∈T_n
If it is, then t is in the output language!
Otherwise, try another s, s₂, ..., s_{n-1}

Key Lemmas

Garbage-Free' Lemma—Nondet. Version

NP/NSPACE(n) "Translation Membership" for a single mtt translation

Key Lemma (1): 'Garbage-Free' Lemma—Nondet. Version

Three Types of Deletion

"Erasure"

 $\Box <q,\sigma>(y_1, y_2) \rightarrow y_1$

Lemma:

If no erasing, input-deleting, or skipping rule is used during the computation, then $|in| \leq 2|out|$

 \Box No new output node is generated at this σ node. Only returning its parameter.

"Input-Deletion"

$$\Box < q, \sigma(x_1, x_2) > () \rightarrow \delta(< q, x_1 > ())$$

 \Box Discarding the "x₂" subtree!

"Skipping"

 $\Box < q, \sigma(x_1) > () \rightarrow < q, x_1 > ()$

Occurs only at monadic node. No new output is generated here. Just going down to its child node.

Eliminating The Three Types of Deletion

- Achieved by heavily manipulating the rules
 For details, please consult the paper
- One of the difficulties compared to the deterministic case: Inline-Expansion
 <q, a>(y) → y
 <q, b(x₁,x₂)> → c(<p,x₁>(<q,x₂>(e)))

(Assume we know that 'b''s child is always 'a')

 $\Box <q, b(x_1,x_2) > \rightarrow c(<p,x_1>(e))$

With Nondeterminism, Inline-Expansion is Not Easy

■ <p, a>(y) \rightarrow c(y, y)

 \wedge

$$\begin{array}{c} \bullet & \bullet \\ \hline \textbf{Different} \\ \bullet & \bullet \\ \hline (q, b(a) > ()) \\ \hline (d) \rightarrow < p, a > (e) \rightarrow c(e, e) \\ \hline (d) \rightarrow \\ \hline (d) \rightarrow c(f, f) \\ \hline (d) \rightarrow \\ \hline (d)$$

$$\rightarrow$$
 () \rightarrow (e)

$$() \rightarrow (f)$$

$$i < p, a > (y) \rightarrow c(y, y)$$

Solution: "MTT with Choice and Failure"

- We have extended MTTs with "inline" nondeterminism
 - □ Allows inline-expansion for free!
 - Actually, we prove the output language complexity for mtt-cfs

<q, b(a)>() \rightarrow <p,a>(+(e,f)) \rightarrow c(+(e,f), +(e,f)) \rightarrow c(e, f)

<q, a>() → e
<q, a>() → f
<q, b(x)>() → <p,x>(+(e, f))
<p, a>(y) → c(y, y)

Key Lemma (2): "Translation Membership" of single τ_i

- Given a pair (s_{i-1}, s_i) of trees, we can determine whether (s_{i-1}, s_i) ∈ τ_i in linear-space & polynomial time wrt |s_{i-1} |+|s_i| in nondet. Turing machine
- Naively Applying the folklore deterministic computation takes O(|s_{i-1} |+ |T(s_{i-1})|) time/space
 → New Idea is Necessary

"Translation Membership" of single τ_i

for both saving space and sharing computations

Example: Linear Nondet. MTT Reading Some Node Twice

- < q, b(x1,x2) > () → < q, a > () →
- q, a>()
- <p, a>(y)

 $\rightarrow <p,x1>(<q,x2>())$ $\rightarrow e$ $\rightarrow f$ $\rightarrow g(y, y)$

Solution: Compression by Context-Free Tree Grammar

The set all outputs T_i(s_{i-1}) of an MTT can be represented by a CFTG of size proportional to |s_{i-1}| [MB04]

 Navigation (up,1stchild, nextsibl) on the compressed representation is efficient for linear mtts

Summary

- Composition sequence T₁; ...; T_n of mtts can be converted to an equivalent 'garbage-free' composition
- Translation Membership of any mtt is in NP/NSPACE(n)
- → Altogether, the output language complexity of mtt-compositions is NP/NSPACE(n)
 □ Corollary: OI-hierarchy, PTT*(REGT), ATT*(REGT), ... is in NP/NSPACE(n)
- Current Status (Unpublished): NSPACE(n) → DSPACE(n)