
Parsing Expression Grammar

and Packrat Parsing      (Survey)

IPLAS Seminar Oct 27, 2009

Kazuhiro Inaba



This Talk is Based on These Resources

 The Packrat Parsing and PEG Page (by Bryan Ford)
 http://pdos.csail.mit.edu/~baford/packrat/

 (was active till early 2008)

 A. Birman & J. D. Ullman, “Parsing Algorithms with 
Backtrack”, Information and Control (23), 1973

 B. Ford, “Packrat Parsing: Simple, Powerful, Lazy, 
Linear Time”, ICFP 2002

 B. Ford, “Parsing Expression Grammars: A 
Recognition-Based Syntactic Foundation”, POPL 2004

http://pdos.csail.mit.edu/~baford/packrat/


Outline

 What is PEG?
 Introduce the core idea of Parsing Expression 

Grammars

 Packrat Parsing
 Parsing Algorithm for the core PEG

 Packrat Parsing Can Support More…
 Syntactic predicates

 Full PEG
 This is what is called “PEG” in the literature.

 Theoretical Properties of PEG

 PEG in Practice



What is PEG?

 Yet Another Grammar Formalism

 Intended for describing grammars of 
programming languages (not for NL, nor 
for program analysis)

 As simple as Context-Free Grammars

 Linear-time parsable

 Can express:
 All deterministic CFLs (LR(k) languages)
 Some non-CFLs



What is PEG? – Comparison to CFG

(Predicate-Free) Parsing
Expression Grammar Context-Free Grammar

 A ← B C

 Concatenation

 A ← B / C

 Prioritized Choice

 When both B and C 
matches, prefer B

 A → B C

 Concatenation

 A → B | C

 Unordered Choice

 When both B and C 
matches, either will do



Example

(Predicate-Free) Parsing
Expression Grammar Context-Free Grammar

 S ← A a b c

 A ← a A / a

 S fails on “aaabc”.

 S → A a b c

 A → a A | a

 S recognizes “aaabc”

S

A

Aa

a

abc

S

A

Aa

a A

a

Oops!



Another Example

(Predicate-Free) Parsing
Expression Grammar Context-Free Grammar

 S ← E ;
/ while ( E ) S
/ if ( E ) S else S
/ if ( E ) S
/ … 

 if(x>0)
if(x<9)

y=1;
else

y=3; unambiguous

 S → E ;
| while ( E ) S
| if ( E ) S else S
| if ( E ) S
| …

 if(x>0)
if(x<9)

y=1;
else

y=3;    ambiguous



Formal Definition

 Predicate-Free  PEG  G  is <N, Σ, S, R>

 N : Finite Set of Nonterminal Symbols

 Σ : Finite Set of Terminal Symbols

 S ∈ N : Start Symbol

 R ∈ N → rhs : Rules, where

 rhs ::=   ε

|   A    (∈ N)

| a    (∈ Σ)

|   rhs / rhs

|   rhs rhs

 Note: A←rhs stands for   R(A)=rhs

 Note: Left-recursion is not allowed



Semantics
 [[ e ]] :: String → Maybe String   where String=Σ*

 [[ c ]] = λs → case s of (for c ∈ Σ)

 c : t → Just t
 _     → Nothing

 [[ e1 e2 ]] = λs → case   [[ e1 ]] s   of
 Just t    → [[ e2 ]] t
 Nothing → Nothing

 [[ e1 / e2 ]] = λs → case    [[ e1 ]] s   of
 Just t    → Just t
 Nothing → [[ e2 ]] s

 [[ ε ]] = λs → Just s
 [[ A ]] = [[ R(A) ]]  (recall: R(A) is the unique rhs of A)



Example (Complete Consumption)

S ← a S b / c

 [[S]] “acb” = Just “”

 [[aSb]] “acb” = Just “”

 [[a]] “acb” = Just “cb”

 [[S]] “cb” = Just “b”
[[aSb]] “cb” = Nothing

 [[a]] “cb” = Nothing

[[c]] “cb” = Just “b”

 [[b]] “b” = Just “”



Example (Failure, Partial Consumption)

S ← a S b / c

 [[S]] “b” = Nothing
 [[aSb]] “b” = Nothing

 [[a]] “b” = Nothing

 [[c]] “b” = Nothing

 [[S]] “cb” = Just “b”
 [[aSb]] “cb” = Nothing

 [[a]] “cb” = Nothing

 [[c]] “cb” = Just “b”



Example (Prioritized Choice)

S ← A a

A ← a A / a

 [[ S ]] “aa” = Nothing

 Because [[ A ]] “aa” = Just “”,  not Just “a”

 [[ A ]] “aa” = Just “”

 [[ a ]] “aa” = Just “a”

 [[ A ]] “a” = Just “”

…



“Recognition-Based”

 In “generative” grammars such as CFG, 
each nonterminal defines a language 
(set of strings) that it generates.

 In “recognition-based” grammars, 
each norterminal defines a parser 
(function from string to something)
that it recognizes.



Outline

 What is PEG?
 Introduce the core idea of Parsing Expression 

Grammars

 Packrat Parsing
 Parsing Algorithm for the core PEG

 Packrat Parsing Can Support More…
 Syntactic predicates

 Full PEG
 This is what is called “PEG” in the literature.

 Theoretical Properties of PEG

 PEG in Practice



Parsing Algorithm for PEG

 Theorem: Predicate-Free PEG can be 
parsed in linear time wrt the length of 
the input string. 

 Proof

 By Memoization

( All arguments and outputs of
 [[e]] :: String -> Maybe String

are the suffixes of the input string )

[Semantics]



Parsing Algorithm for PEG

How to Memoize?

 Tabular Parsing [Birman&Ullman73]

 Prepare a table of size |G|×|input|, and 
fill it from right to left.

 Packrat Parsing [Ford02]
 Use lazy evaluation.

[Semantics]



Parsing PEG (1: Vanilla Semantics)

S ← aS / a
 doParse = parseS :: String -> Maybe String

 parseA s =

 case s of 'a':t -> Just t

 _ -> Nothing

 parseS s = alt1 `mplus` alt2   where

 alt1 = case parseA s of

 Just t -> case parseS t of

 Just u -> Just u

 Nothing -> Nothing

 Nothing-> Nothing

 alt2 = parseA s

[Semantics]



Parsing PEG (2: Valued)

S ← aS / a
 doParse = parseS :: String -> Maybe (Int, String)

 parseA s =

 case s of 'a':t -> Just (1, t)

 _ -> Nothing

 parseS s = alt1 `mplus` alt2 where

 alt1 = case parseA s of

 Just (n,t)-> case parseS t of

 Just (m,u)-> Just (n+m,u)

 Nothing -> Nothing

 Nothing -> Nothing

 alt2 = parseA s

[Semantics]



Parsing PEG (3: Packrat Parsing)

S ← aS / a
 type Result = Maybe (Int, Deriv)

 data Deriv = D Result Result

 doParse :: String -> Deriv

 doParse s = d where

 d = D resultS resultA

 resultS = parseS d

 resultA = case s of ‘a’:t -> Just (1,next)

 _ -> Nothing

 next = doParse (tail s)

 …

[Semantics]



Parsing PEG (3: Packrat Parsing, cnt’d)

S ← aS / a

 type Result = Maybe (Int, Deriv)

 data Deriv = D Result Result

 parseS :: Deriv -> Result

 parseS (D rS0 rA0) = alt1 `mplus` alt2 where

 alt1 = case rA0 of

 Just (n, D rS1 rA1) -> case  rS1 of
 Just (m, d) -> Just (n+m, d)

 Nothing -> Nothing

 Nothing -> Nothing

 alt2 = rA0

 alt1 = case parseA s of

 Just (n,t)-> case parseS t of
 Just (m,u)-> Just (n+m,u)

 Nothing -> Nothing

 Nothing -> Nothing

 alt2 = parseA s

[Semantics]



Packrat Parsing Can Do More

 Without sacrificing linear parsing-time, 
more operators can be added. Especially, 
“syntactic predicates”:

 [[&e]] = λs → case [[e]] s of
 Just _ → Just s

 Nothing → Nothing

 [[!e]] = λs → case [[e]] s of
 Just _ → Nothing

 Nothing → Just s

[Semantics]



Formal Definition of PEG

 PEG  G  is <N, Σ, S, R∈N→rhs> where

 rhs ::=   ε

|   A    (∈ N)

| a    (∈ Σ)

|   rhs / rhs

|   rhs rhs

|   &rhs

|   !rhs

|   rhs? (eqv. to X where X←rhs/ε)

|   rhs* (eqv. to X where X←rhs X/ε)

|   rhs+ (eqv. to X where X←rhs X/rhs)



Example: A Non Context-Free Language

 {anbncn |  n>0}

is recognized by

 S ← &X a* Y !a !b !c
X ← aXb / ab
 Y ← bYc / bc



Example: C-Style Comment

 C-Style Comment

 Comment  ← /* ((! */) Any)* */

 (for readability, meta-symbols are colored)

 Though this is a regular language, it cannot be 
written this easy in conventional regex.



Outline

 What is PEG?
 Introduce the core idea of Parsing Expression 

Grammars

 Packrat Parsing
 Parsing Algorithm for the core PEG

 Packrat Parsing Can Support More…
 Syntactic predicates

 Full PEG
 This is what is called “PEG” in the literature.

 Theoretical Properties of PEG

 PEG in Practice



Theoretical Properties of PEG

 Two Topics

 Properties of Languages Defined by PEG

 Relationship between PEG and predicate-
free PEG



Language Defined by PEG

 For a parsing expression e

 [Ford04] F(e) = {w∈Σ*  |  [[e]]w ≠ Nothing }

 [BU73] B(e) = {w∈Σ*  |  [[e]]w = Just “” }

 [Redziejowski08]
 R. R. Redziejowski, “Some Aspects of Parsing 

Expression Grammar”, Fundamenta
Informaticae(85), 2008
 Investigation on concatenation [[e1 e2]] of two PEGs

 S(e) = {w∈Σ*  |  ∃u. [[e]]wu = Just u }

 L(e) = {w∈Σ*  |  ∀u. [[e]]wu = Just u }



Properties of F(e) = {w∈Σ*| [[e]]w ≠ Nothing}

 F(e) is context-sensitive

 Contains all deterministic CFL

 Trivially Closed under Boolean Operations
 F(e1) ∩ F(e2) = F( (&e1)e2 )

 F(e1) ∪ F(e2) = F( e1 / e2 )

 ~F(e) = F( !e )

 Undecidable Problems
 “F(e) = Φ”? is undecidable

 Proof is similar to that of intersection emptiness 
of context-free languages

 “F(e) = Σ*”? is undecidable

 “F(e1)=F(e2)”? is undecidable



Properties of B(e) = {w∈Σ*| [[e]]w = Just “”}

 B(e) is context-sensitive

 Contains all deterministic CFL

 For predicate-free e1, e2
 B(e1)∩B(e2) = B(e3) for some predicate-free e3

 For predicate-free & well-formed e1,e2 where
well-formed means that [[e]] s is either Just”” or Nothing

 B(e1)∪B(e2) = B(e3) for some pf&wf e3

 ~B(e1) = B(e3) for some predicate-free e3

 Emptiness, Universality, and Equivalence is 
undecidable



Properties of B(e) = {w∈Σ*| [[e]]w = Just “”}

 Forms AFDL, i.e.,

 markedUnion(L1, L2) =  aL1 ∪  bL2

 markedRep(L1) = (aL1)*

 marked inverse GSM (inverse image of a string 
transducer with explicit endmarker)

 [Chandler69] AFDL is closed under many other 
operations, such as left-/right- quotients, 
intersection with regular sets, …

 W. J. Chandler, “Abstract Famlies of Deterministic 
Languages”, STOC 1969



Predicate Elimination

 Theorem: G=<N,Σ,S,R> be a PEG such that 
F(S) does not contain ε. Then there is an 
equivalent predicate-free PEG.

 Proof (Key Ideas):

 [[ &e ]] = [[ !!e ]]

 [[ !e C ]] = [[ (e Z / ε) C ]] for ε-free C
 where Z = (σ1/…/σn)Z / ε,  {σ1, …,σn}=Σ



Predicate Elimination

 Theorem: PEG is strictly more powerful than 
predicate-free PEG

 Proof:

 We can show, for predicate-free e,

 ∀w.( [[e]] “” = Just “”   ⇔ [[e]] w = Just w )

by induction on |w| and on the length of derivation

 Thus we have

 “”∈F(S)   ⇔  F(S)=Σ*

but this is not the case for general PEG (e.g., S←!a)



Outline

 What is PEG?
 Introduce the core idea of Parsing Expression 

Grammars

 Packrat Parsing
 Parsing Algorithm for the core PEG

 Packrat Parsing Can Support More…
 Syntactic predicates

 Full PEG
 This is what is called “PEG” in the literature.

 Theoretical Properties of PEG

 PEG in Practice



PEG in Practice

 Two Topics

 When is PEG useful?

 Implementations



When is PEG useful?

 When you want to unify lexer and parser

 For packrat parsers, it is easy.

 For LL(1) or LALR(1) parsers, it is not.

 Error in C++98, because >> is RSHIFT, not two 
closing angle brackets

 Ok in Java5 and C++1x, but with strange grammar

list<list<string>>

(* nested (* comment *) *)

s = “embedded code #{1+2+3} in string”



Implementations



Performance (Rats!)

 R. Grimm, “Better Extensibility through Modular 
Syntax”, PLDI 2006

 Parser Generator for PEG, used, e.g., for Fortress

Experiments 
on Java1.4 
grammar, 

with sources 
of size

0.7 ～ 70KB



PEG in Fortress Compiler

 Syntactic Predicates are widely used

 (though I’m not sure whether it is essential, due to 
my lack of knowledge on Fortress…)

/* The operator "|->" should not be in the left-hand sides of map
expressions  and map/array comprehensions.

*/

String mapstoOp =
!("|->" w Expr (w mapsto / wr bar / w closecurly / w comma)) "|->" ;

/* The operator "<-" should not be in the left-hand sides of
generator clause lists. */

String leftarrowOp = !("<-" w Expr (w leftarrow / w comma)) "<-";



Optimizations in Rats!



Summary

 Parsing Expression Grammar (PEG) …

 has prioritized choice e1/e2, rather than 
unordered choice e1|e2.

 has syntactic predicates &e and !e, which 
can be eliminated if we assume ε-freeness.

 might be useful for unified lexer-parser.

 can be parsed in O(n) time, by memoizing.


