Parsing Expression Grammar
and Packrat Parsing (Survey)

IPLAS Seminar Oct 27, 2009
Kazuhiro Inaba

This Talk is Based on These Resources
» The Packrat Parsing and PEG Page (by Bryan Ford)

(was active till early 2008)

» A. Birman & J. D. Ullman, “Parsing Algorithms with
Backtrack”, Information and Control (23), 1973

» B. Ford, “Packrat Parsing: Simple, Powerful, Lazy,
Linear Time”, ICFP 2002

» B. Ford, “Parsing Expression Grammars: A
Recognition-Based Syntactic Foundation”, POPL 2004

http://pdos.csail.mit.edu/~baford/packrat/

Outline
» What is PEG?

Introduce the core idea of Parsing Expression
Grammars

» Packrat Parsing
Parsing Algorithm for the core PEG

» Packrat Parsing Can Support More::-
Syntactic predicates

» Full PEG

This is what is called “PEG"” in the literature.
» Theoretical Properties of PEG

» PEG In Practice

What is PEG?
» Yet Another Grammar Formalism

Intended for describing grammars of
programming languages (not for NL, nor
for program analysis)

As simple as Context-Free Grammars
Linear-time parsable

Can express:
All deterministic CFLs (LR(k) languages)
Some non-CFLs

What is PEG? — Comparison to CFG

» A< B C » A—> B C
Concatenation Concatenation

» A< B/ C »A—>B | C
Prioritized Choice Unordered Choice
When both B and C When both B and C

matches, prefer B matches, either will do

Example

»S< Aabc »S—>Aabc
»A<—aA/a »A—>a Al a
S fails on “aaabc”. S recognizes “aaabc”

Another Example

» S<—E: » S—E;
/ while (E) S while (E) S
/iIf(E)SelseS if(E)SelseS
//if(E)S if (E)S
if(x>0 i
- ifcko) <o)
y=1, y=1;
else else

y=3; unambiguous y=3; ambiguous

Formal Definition

» Predicate-Free PEG G is <N, 2, S, R>
N : Finite Set of Nonterminal Symbols
> : Finite Set of Terminal Symbols
S € N : Start Symbol
R € N — rhs : Rules, where

rhs ::= €

A (€ N)

a (e 2)

rhs / rhs

rhs rhs

Note: A<rhs stands for R(A)=rhs

Note: Left-recursion is not allowed

Semantics
» [[e]] :: String = Maybe String where String=2*

» [[¢]] = As — case s of (for c € X)
c:t—>Justt
— Nothing

» [[ele2]] =As—>case [[el]]s of
Justt —[[e2]]t
Nothing — Nothing

» [[el/e2]]=As—>case [[el]]s of
Justt — Justt
Nothing > [[e2]] s

» [[€]] = As = Just s
» [[A1l =1[[R(A)]] (recall: R(A) is the unique rhs of A)

S<aSb/c

» [[S]] “acb”
[[aSb]] “acb”
[[a]] “acb”
[[S]] “cb”
[[aSb]] “cb”

» [[a]] “cb”

[[c]] “cb”
[[b]] 11 bll

Example (Complete Consumption)

mn

= Just

Just “”

= Just “cb”
= Just “b”
= Nothing

= Nothing

= Just “b”

= Just “”

Example (Failure, Partial Consumption)

S<aSb/c

» [[S]] “b” = Nothing
[[aSb]] “b" = Nothing
[[a]] “D" = Nothing
[[c]] “b” = Nothing

» [[S]] “cb” = Just “b”
[[aSb]] “cb” = Nothing
[[a]] “cb” = Nothing

[[c]] “cb” = Just “b”

Example (Prioritized Choice)
S< Aa
A< aA/a

» [[S |] “@aa” = Nothing
Because [[A]] “aa” = Just ", not Just “a”

[[A]] llaall — Just mn
[[@]] "aa” = Just“a”
[[A]] Ilall — Just mHn

“Recognition-Based”

» In “generative” grammars such as CFG,
each nonterminal defines a language
(set of strings) that it generates.

» In “recognition-based” grammars,
each norterminal defines a parser
(function from string to something)
that it recognizes.

Outline
» What is PEG?

Introduce the core idea of Parsing Expression
Grammars

» Packrat Parsing
Parsing Algorithm for the core PEG

» Packrat Parsing Can Support More:-
Syntactic predicates

» Full PEG

This is what is called “PEG"” in the literature.
» Theoretical Properties of PEG

» PEG In Practice

3
0.

Parsing Algorithm for P!

» Theorem: Predicate-Free PEG can be

parsed in linear time wrt the length of
the input string.

» Proof

By Memoization

(All arguments and outputs of
[[e]] :: String -> Maybe String

are the suffixes of the input string)

3
0.

Parsing Algorithm for P
» How to Memoize?

Tabular Parsing [Birman&UIIman73]

Prepare a table of size |G| x |input|, and
fill it from right to left.

Packrat Parsing [Ford02]
Use lazy evaluation.

Parsing PEG (1: Vanilla Semantics)

S<aS/a
» doParse = parseS :: String -> Maybe String
» parseA s =

cases of 'a':t -> Justt

-> Nothing

» parseS s = altl mplus alt2 where
altl = case parseA s of
Just t -> case parseS t of
Just u -> Just u
Nothing -> Nothing
Nothing-> Nothing
alt2 = parseA s

Parsing PEG (2: Valued)

S<aS/a
» doParse = parseS :: String -> Maybe (Int, String)
» parseA s =

case s of 'a":t -> Just (1, t)

_ => Nothing
» parseS s = altl mplus alt2 where
altl = case parseA s of
Just (n,t)-> case parseS t of
Just (m,u)-> Just (n+m,u)
Nothing -> Nothing
Nothing -> Nothing
alt2 = parseA s

Parsing PEG (3: Packrat Parsing)

S<aS/a
» type Result = Maybe (Int, Deriv)
» data Deriv = D Result Result

» doParse :: String -> Deriv

» doParse s = d where
d = D resultS resultA
resultS = parseS d
resultA = case s of ‘a’:t -> Just (1,next)
_ -> Nothing
next = doParse (tail s)

Parsing PEG (3: Packrat Parsing, cnt’d)

S<aS/a
» type Result = Maybe (Int, Deriv)
» data Deriv = D Result Result

» parseS :: Deriv -> Result

» parseS (D rS0 rA0) = altl mplus alt2 where

altl = case rAO of

Just (n, D rS1 rAl) -> case rS1 of

Just (m, d) -> Just (n+m, d) » altl = case parseA s of

Nothing -> Nothing Just (n,t)-> case parseS t of
: i Just (m,u)-> Just (n+m,u)
Nothing -> Nothing Nothing -> Nothing
alt2 = rAO Nothing -> Nothing
alt2 = parseA s

Packrat Parsing Can Do More

» Without sacrificing linear parsing-time,
more operators can be added. Especially,
“syntactic predicates”:

[[&e]] = As — case [[e]] s of
Just _ — Just s
Nothing — Nothing

[[le]] = As — case [[e]] s of
Just _ — Nothing
Nothing — Just s

Formal Definition of PEG

» PEG G is <N, 2, S, ReN—rhs> where
rhs ::= €

A (e N)

a (€2)

rhs / rhs

rhs rhs

&rhs

Irhs

rhs? (egv. to X where X<«rhs/g)

rhs* (eqv. to X where X<rhs X/¢)

rns—+ (eqv. to X where X<—rhs X/rhs)

Example: A Non Context-Free Language
»{a"b"c" | n>0}
IS recognized by

»yS<— &KX a*Ylalblc
» X < aXb / ab
»Y <~ bYc / bc

Example: C-Style Comment
» C-Style Comment

» Comment < /* ((1 */) Any)* */
(for readability, meta-symbols are colored)

» Though this is a regular language, it cannot be
written this easy in conventional regex.

Outline
» What is PEG?

Introduce the core idea of Parsing Expression
Grammars

» Packrat Parsing
Parsing Algorithm for the core PEG

» Packrat Parsing Can Support More::-
Syntactic predicates

» Full PEG

This is what is called “PEG” in the literature.
» Theoretical Properties of PEG

» PEG In Practice

3
0.

Theoretical Properties of P]
» Two Topics

Properties of Languages Defined by PEG

Relationship between PEG and predicate-
free PEG

Language Defined by PEG
» For a parsing expression e

» [Ford04] F(e) = {weZ* | [[e]]w # Nothing }
» [BU73] B(e) = {weX* | [[e]]w = Just “")

» [RedziejowskiO8]
R. R. Redziejowski, “Some Aspects of Parsing

Expression Grammar”, Fundamenta
Informaticae(85), 2008

Investigation on concatenation [[el e2]] of two PEGs
S(e) = {we2* | Fu. [[e]]wu = Just u }
L(e) = {we2* | Vu. [[e]]lwu = Justu }

Properties of F(e) = (w&XZ*| [|e]lw # Nothing}
» F(e) is context-sensitive
» Contains all deterministic CFL

» Trivially Closed under Boolean Operations
F(el) n F(e2) = F((&el)e2)
F(el)u F(e2) =F(el/e2)
~F(e) =F(le)
» Undecidable Problems
“F(e) = ®"? is undecidable
Proof is similar to that of intersection emptiness
of context-free languages
“F(e) = >2*"? Is undecidable
“F(el)=F(e2)"? is undecidable

Properties of B(e) = fweX*| [[e|]lw = Just “7}
» B(e) is context-sensitive
» Contains all deterministic CFL

» For predicate-free el, e2
B(el)nB(e2) = B(e3) for some predicate-free e3

» For predicate-free & well-formed el,e2 where
well-formed means that [[e]] s is either Just”” or Nothing

B(el)uB(e2) = B(e3) for some pf&wf e3
~B(el) = B(e3) for some predicate-free e3

» Emptiness, Universality, and Equivalence is
undecidable

Properties of B(

e) = {weZ*| [[e]]lw = Just 7}

» Forms AFDL, I1.e.,
markedUnion(L;, L,) = aL; v bL,

markedRep(L1)
marked inverse

= (al,)*
GSM (inverse image of a string

transducer with explicit endmarker)

» [Chandler69] A
operations, suc
Intersection wit

-DL is closed under many other
N as left-/right- quotients,

N regular sets, -

W. J. Chandler, “Abstract Famlies of Deterministic
Languages”, STOC 1969

Predicate Elimination

» Theorem: G=<N,2,5,R> be a PEG such that

F(S) does not contain €. Then there is an
equivalent predicate-free PEG.

» Proof (Key Ideas):
[[&e][] = [[e]]
[['leC]l =[[(eZ/€)C]]fore-free C
where Z = (04/---/0.,)2 / €, {04, *,0, =2

Predicate Elimination

» Theorem: PEG is strictly more powerful than
predicate-free PEG

» Proof:

We can show, for predicate-free e,
Vw.([[e]] " =Just”™ & [[e]]w = Justw)
by induction on |w| and on the length of derivation

Thus we have
llIIEF(S) = F(S)=Z*
but this is not the case for general PEG (e.g., S<!a)

Outline
What is PEG?

Introduce the core idea of Parsing Expression
Grammars

Packrat Parsing
Parsing Algorithm for the core PEG

Packrat Parsing Can Support More::-
Syntactic predicates

Full PEG

This is what is called “PEG” in the literature.

Theoretical Properties of PEG
PEG in Practice

PEG 1n Practice
» Two Topics

When is PEG useful?

Implementations

When is PEG useful?

» When you want to unify lexer and parser

For packrat parsers, it is easy.
For LL(1) or LALR(1) parsers, it is not.

list<list<string>>

Error in C++4+98, because >> is RSHIFT, not two
closing angle brackets

Ok in Java5 and C++1x, but with strange grammar

(* nested (* comment *) *)

s = “embedded code #{1+2+3} in string”

Implementations

L

L I B

Java:
o Hatzs' by BEohert Grimm, 5 part of the eX]
o AMNTLE, a well-established parser generat
packrat parsing with LL parsing technigque
o LGl a dynamic FEG-hased parser geners
Pvython:

o The pyparsing monadic parsing comhbinato
o Pachkrat parsing support has also besn inc
Haskell:
o Frishy by John Meacham is a monadic pa
support dvnamic specification of composs
¢ Pappy by Ervan Ford is 3 simple prototyg
G, C++
o The Marwhal compiler suite by Gordon Tis
¢ The PEG Template Library for C++k by
o The peg/les parser generator emphasizes
C#: NPEG is a library providing objects to build
JavaScript: OlMeta supports FEG-based patte
Tcl: The new osrammar:pes module supports ars
Smalltalk: Oheta provides PEG-based patterr
Scheme: Tony Garnock—Jones has wrtten a_p
Common Lisp Cl-pes by John Leuner suppon
Lua: FEoherto Ierusalimschy has provided the L
Ruby now has the Trestop orammar descriptio

Performance (Rats!)

» R. Grimm, “Better Extensibility through Modular
Syntax”, PLDI 2006

Parser Generator for PEG, used, e.qg., for Fortress

System Algorithm Modules Lex AST LoC

Rats! PEG 9 — — 790
SDF2 GLER 57 — — 1.680
Elkhound LALR/GLR 1 1 1 2,370
ANTLR LL 1 1 — 1.280
: JavaCC LL 1 1 — 1.240
Experiments
on Javal.4 Recognizer Parser
grammat, System T-put Heap Util. T-put Heap Util.
with sources Rats! 518.0 51.5 317.0 58.0
of size SDF2 136.1 — 21.4 —
0.7 ~ 70KB Elkhound 141.5 — 139.4 —
ANTLR 338.6 11.5 393.6 28.0

JavaCC 1.114.3 10.6 38219 63.2

PEG in Fortress Compiler

» Syntactic Predicates are widely used

(though I'm not sure whether it is essential, due to
my lack of knowledge on Fortress---)

/* The operator "|->" should not be in the left-hand sides of map
expressions and map/array comprehensions.

*/

String mapstoOp =
1("|->" w Expr (w mapsto / wr bar / w closecurly / w comma)) "|->" ;

/* The operator "<-" should not be in the left-hand sides of
generator clause lists. */

String leftarrowOp = I("<-" w Expr (w leftarrow / w comma)) "<-";

Optimizations in Rats!

1200 350
+ 300
_ 1000 N Throughput
ol T+ 220
-
= 800
S + 200
§ 600
% + 130
a 400 4
% + 100
200 -0 Heap Utilization 1 50
~i——————a—a—a—a
l:l I 1 1 I 1 1 1 1 I 1 1 I 1 1 I 1 l:l
@ yo gb B oo Ay B g AT e o S L
ST ISP A ST T
Ts® S T Wwero

Throughput (KB/fs)

Summary
Parsing Expression Grammar (PEG) ---

has prioritized choice el/e2, rather than
unordered choice el|eZ2.

has syntactic predicates &e and !e, which
can be eliminated if we assume s-freeness.

might be useful for unified lexer-parser.

can be parsed in O(n) time, by memoizing.

