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Abstract. An n-ary query over trees takes an input tteend returns a set of-

tuples of the nodes af In this paper, a compact data structure is introduced for
representing the answer setsrehiry queries defined by tree automata. Despite
that the number of the elements of the answer set can be as laft&,asur
representation allows to store the set using anly3”|¢|) space. Several basic
operations on the sets are shown to be efficiently executable on the representation.

1 Introduction

Finite state automaton is a well-known model for representing properties for trees and
strings. The class of queries definable by finite state automata is cadjetér and is
widely used both in theory and in practice. A number of query formalisms are shown
to be equivalent or subsumed by regular queries. Examples of such formalisms include,
regular expression pattern [1], monadic second-order logic/{2Jalculus [3], Core
XPath [4], monadic Datalog [5], boolean attribute grammar [6], etc.

In this paper, we are interested in the space complexity ofithey queries defined
by tree automata. An-ary query over trees takes an input ttegnd returns a set of
n-tuples of the nodes df The number of elements in the answer set ohary query
may be as large gs|™ where|t| is the number of the nodes of And, usually, stor-
ing a set of|t|” elements requires at leagt|” space where is the space required
to store a single element (in this case, entuple of nodes). Thé&(|t|™) space con-
sumption is unavoidable if the elements are chosen in a perfectly random manner; it
is a well-known consequence from the information theory. Note, however, we are in-
terested in more practical, less random queries. Queries defined by tree automata have
much more structure than random ones. By exploiting the structural characteristics of
regular queries, we can represent the answer sets in somgressetbrm.

Let us explain the idea by an example. Consider the regular
query “select all pair of nodeér,y) such thatz is in the left
subtree of the root node angdis in the right subtree of the root
node” with the input tree as in the figure. Then the answer set
consists of nine elementd:(v1, v4), (ve, v4), (v3,v4), (v1,v5),
(U27 1)5), (1}3, U5)7 (Ul, ’Uﬁ), (U27 UG), (1}3, 1)6)}. ObViOUSly, if an in-
put tree has nodes both in the left and the right subtrees, the size of the answer set will
ben?, which is quadratic in the number. + 1 of the nodes. Our approach for avoiding
the quadratic blow-up is to represent the answer set by a synmibgliessioninstead
of computing the concrete list of elements. For this example, we represent the answer




set by the expressiofwy, va, v3} x {v4,vs,v6} Wherex denotes the product of two
sets. Counting the number of variablgsand the operator, the length of the expression
is 7 instead of). Analogously, for the general case witmodes in both the left and the
right subtrees, the answer set can be represented by the expression oRtength
which consumes only linear space with respect to the size of the input tree.

The contribution of our work is in establishing the expression-based compact rep-
resentation as illustrated above. In fact, only two operatofghsjoint unior) andx (a
slight variant ofproduc)—are necessary for achieving the linear-size representation of
the answer sets of regular queries. We show that for any fixady regular query and
an input tree, the answer set can always be represented by an expressiorarmh«
with every leaf expression being a singleton set of an input node. By sharing common
sub-expressions, the expression can be represented by a dag©f3#28). That is,
regardless of the arity of the query, the data complexity with respect to the s$ize
of the input is always linear! The fact8f is sufficiently low for queries with smak
such as binary or ternary queries, which are the most cases occur in practice (after all,
it is quite rare to run, say, a 100-ary query).

Furthermore, the dag representation is extended to a data structure S&®&&U
(Set Representation by Expression Dag#)ich enjoys good time complexity as well
as the size-efficiency. The SRED representation of the answer set can always be com-
puted from the input tree in time O(3"|t]), regardless how large the actual answer
set is. Also, evaluation (or we could sagcompressignof a SRED to yield the con-
crete list of answer tuples can be done in ti®é"a), wherea is the number of the
answers. By combining these two steps, we obtain an algorithm for regular queries in
the optimal data complexit§)(|¢| 4+ a). More than that, on SRED, we can carry out the
following two important operationwithout decompressing; (1) SELECTION: for an
answer set, the SRED representation of the sgt, = {(v1, s Vie1,Vig1, -y Un) |
(U1y.. ., Vi1, U, Vit1,-..,V,) € 8} can be computed in tim@(3"h) whereh is the
height of the input tree for binary trees and is the height titog& | for unranked trees,
and (2) RROJECTION the setsy, = {v; | (v1,...,v,) € s} can be computed in time
O(6™h|sq,|). The key idea of SRED is to remember for every sub-expression the least
common ancestor of the nodes contained in the set represented by the sub-expression.
The information allows to locate the leaf expressions containing each input node in time
proportional only to the height of the expression-dag.

Related Work SRED has much similarity to the Complete Answer Aggregate (CAA)
introduced by Meuss, Schulz, and Bry [7] as a compact representation of answer sets
of queries. The size of a CAA i®(nh|t|) which is competitive to ou©(3™[t]). CAA
is also suitable for applying several operations such as membership testing. The main
advantage of our work is that it supports arbitrary regular queries, which is strictly
more expressive than the query language used in [7]. Though an attempt to represent
the answer sets of regular queries with CAA is given by Filiot and Tison [8] through
a decomposition of queries, the space complexit@is|t|%+) for some constand,,
depending on the query, which growst the worst case. Besides, precise complexity
of operations like selection or projection for CAA was not estimated.

An algorithm (FFG algorithm) for answering regulafary queries in the optimal
time complexityO(|t| + a) is shown by Flum, Frick, and Grohe [9]. Since ho compact



data structure was used in their work, the FFG algorithm requies space to be
carried out. In fact, our algorithm can be regarded as a space-efficient variant of the
FFG algorithm. The expression dag generated in our algorithm precisely corresponds
to the set operations executed in the FFG algorithm. On the other hand, the class of
queries that the FFG algorithm can be applied is more general than our algorithm. The
FFG algorithm can also be used for queryimduples ofsets ofnodes ofgraphsthat

have a tree decomposition, while our algorithm only supports queries-faples of

nodes of trees. It is future work whether our compact representation of the answer sets
can be extended to more general class of queries.

2 Preliminaries

In this paper, we mainly considéinary trees in which every node has either zero or
two children. Generalization to the trees with other arity is briefly mentioned in the end
of Section 4. Let” be a finite alphabet that is a disjoint union of two alphatigf8 and

X ), A binary tree(or simply, atre€) over X is a tuplet = (V;, labely, It;, Tt Toot;)
whereV; is the disjoint unionV,'”) u V,® of finite sets ofnodes label, : V¥ —
2O yy2 - 2@ s thelabel function, it,, rt, : V,*) — V, is theleft- andright-
child function respectively, anebot; € V; is theroot node. We require a tree to satisfy
the following conditions: (1) rooted: there is no nade V; such thatt,(v) = root; or
rti(v) = root,, (2) acyclic: there is no nodee€ V; that is reachable from itself by finite
applications oft; andrt;, and (3) tree-formed: for any non-root node V; \ {root; },
there exists unique nodecalled theparentof v such thatlt,(u) = v V 7t (u) = v. A
structure only satisfying (1) and (2) is calledlag For vy, v, € V;, the binary order
relationv; <; vy is defined to hold if and only it is reachable fromy; by zero or
finitely many applications oft; andrt;. We usually omit the subscriptif clear from
the context. By¢| we denote the numbé¥; | of the nodes. We use the notatiofv, , vs)

to denote a node such thatabel;(v) = a, lt;(v) = vy, andrt;(v) = vs.

For a treef, we assume that each node V; can be stored on memory in constant
space independent froftj. In practice, this implies the assumption that the tréts in
the address space of the computer and each node can be represented by a single pointer.
We also assume that the operatidaiz:/, I¢, ¢, and< can be executed in constant time.
In particular, we can test the relatighin constant time by, e.g., the preorder/postorder
numbering [10]. Again by the assumption thaffits in the address space, preorder and
postorder numbers can be stored in constant space.

A tree languageover X is a set of trees ovel. By T, we denote the set of all
trees overY. An important class of tree languages are those defined in terms of tree
automata. Abottom-up deterministic tree automatowmer X' is a tupled = (Q 4, d 4,
F,) whereQ 4 is the set of statesiy : (2@ U X®) x Qa4 x Q4) — Q4 is the
transition function, and?’y C @ 4 is the set of accepting states. The subsclips
omitted if clear from the context. Aun of a tree automatom on the input tree is the
unique functiorp : V; — Q4 such thatp(v) = 6.4 (label;(v)) if label,(v) € £(©) and
p(v) = 0.4 (labely(v), p(Its(v)), p(rty(v))) if label,(v) € 2. The automatoaccepts
t if and only if p(root;) € F4. By L(A), we denote the set of trees acceptedbyA
tree language is said to begularif it is equal toL£(.A) for some tree automataA.



3 N-ary Regular Tree Queries

As a basis of our algorithm for computing the compact representation of answer sets, we
first explain a basic bottom-up algorithm for regular queries witht|* 1) time com-
plexity, which has already been known in the literature. Our new algorithm is obtained
by changing the data structure used in the algorithm, as explained later in Section 4.

An n-aryqueryfor trees over. is a functiony that maps each treec T's; to a set of
n-tuples of its nodes. L& = {0,1}, £ = O x B, 52 = @) xB", ands, =
2y 2P, Foratree languagk C X, ann-ary query defined by. is the function
Y (t) ={(v1,...,vn) | mark(t,vy,...,v,) € L} wheremark(t,vy,...,v,)isatree
m = (Wi, label,,, lty, iy, rooty) with label,, (v) = (labeli(v), by - - - by,) wWhereb;, = 1
if v = v; and0 otherwise. Intuitively, a query defined by a langudgselects a tuple
(v1,...,vy,) if and only if L contains a tree obtained by marking each selected node
with 1. A query defined by a regular languadgés called aregular query In the rest
of the paper, we assume the regular languadge be given as a tree automatdnsuch
that L = L£(.A). Nevertheless, our algorithm can be applied, without changing the data
complexity, to many other query formalisms as long as they define regular languages
by first compiling them into tree automata and then running the algorithm.

The most naive algorithm for a regularary query is, to try all possible mark-
ings. Given an automatad over X, and a tree, for all (vq,...,v,)€ V,* we gen-
erate the marked tre@ark(t, v1, ..., v,) and test whether it is accepted By If it is,
(v1,...,v,) is an answer and hence we output it. This algorithm takgs"+!) time,
because computing each run.ftakesO(|t|) time and we tryj¢|™ runs in total.

Another approach is to try all marking parallelly by a single bottom-up run. The
following recursive procedure QUERY-RUNtakes a node of ¢ and computes a table
containing the result of the parallel marking run.

QUERY-RUNy4 (v)
1. r < new 2-dimensional array of siZ€) 4| x 2™ with each element initialized t
2: if label(v) € X then

for each ((label(v), bo) +— qo) € 6.4 doO

r[qo, bo] «— singleton(v, bg)

else iflabel(v) € X3 then

r1 < QUERY-RUN4 (It(v)); 72 + QUERY-RUN4(rt(v))

for each ((label(v), bo), q1,q2 — qo) € 6.4 do

for each disjoint bp, b1,b2in00...00to 11...11do
7[qo, bo|b1]b2] < 7[qo, bo|b1|b2] W singleton(v,bo) * r1[q1, b1] * 72[q2, b2]

10: return r

By singleton(v, 5 - - - B,,) we denote the singleton sgtus, . . ., u,)} whereu; = v if

G; = 1 andu; = L if 5; = 0. Here, L is a special symbol not contained¥. In line
7, for each disjoint iterates over pairs of forrthy = 511 -+ B1n, b2 = P21+ Pan) €
(B™)? such that for alll < i < n, at most one of By;, B31:, B2 } is 1, with Bo1 - - - Bon =
bo. The operatot is for bitwise-or andJ is disjoint union of sets (the operands are
indeed disjoint, as explained later). The operat a kind of “product” operation that
combines two sets of tuples, defined as follosT = {(uy, - ,u,) | (51, ,8n) €
S, (t1,... tn) € T\WVi: (u; = s; AL =1t)V (L =s; Au; = t;)}. For example,
{(v1, L, L), (v, L, L)} {(L, L,v3), (L, L,vq)}isequal tof(vy, L, v3), (v1,L,vs),
(va, L,v3), (v2, L,v4)}. Let us remark that we never takeproduct of sets that have
tuples with nond. nodes on the same position, as will be shown in Lemma 1.



Let us explain how the algorithm works. Let= QUERY-RUN,(v) for a node
v € V;. Foreachy € Q4 andb = 3, --- 3, € B, r[q,b] is a set ofn-tuples over
the setV; U {L}. Atuple in (V; U {L})™ is called apartial answerto the query. For
example,(vq, L) is a partial answer that selects the neges the first coordinate and
leaves the second coordinate to be selected later. Intuitively)] is the set of partial
answersy such that, if a tree is marked accordingatpthen at the node, the run of
the automatord reaches the state For example, ifvy, L) € r[g, b], it means that “if
the nodev; is marked as the first component of the answer and no node in the subtree
underv is marked as the second compone#itreaches the statgat nodev”. As an
example, let us assumeto be a leaf node labeled € X(© and.A to define a binary
query. Supposé 4 has the following four rulesi 4((c,00)) = g1, 6.4((c,01)) = g2,
04((0,10))=¢1, andd 4((o, 11)) =go. Then, the table = QUERY-RUN, (v) is:

rlgr, 00] = {(L, L)} rlgs,01] = 0 rlq1,10] = {(v, L)} g1, 11] = 0
rlg2,00] = 0 rlg2,01] = {(L,v)} rlgz, 10] = 0 rlg2,11] = {(v,v)}.

The setr[¢1,00] contains(L, 1) because if we do not select any node belavihe
automaton reaches the staie On the other hand, the sefiy2, 00] is empty, because
we cannot reach the staje at nodev if we do not select any node. Similartylg; , 01]
is empty, because we cannot reach the statewe select the second coordinate of the
answer. On the other hand, we haye,, 01] = {(.L,v)}, because if we chooseas the
second coordinate, the automaton reaches thegtate

The indexb of r calledflag denotes the already selected coordinates. Formally, the
following lemma can be shown by induction on the structure of the tree rooted at

Lemma 1. Letr = QUERY-RUN,(v) for somev and (uy,...,u,) € r[q, 81 - Bnl.
Forall 1 <i <n,wehaveq; € V; andv <; w;) if 3; = 1, andu; = L if 3, = 0.

The lemma ensures the two disjointness in the procedure QUERY-RBNst, thex-
product is always taken between the sets with disjoint selected-coordinates. That is,
we need to computé& « T only for the setsS,T such that(...,v;,...) € S and
(... ,ui,...) € T implies eitherv; or u; is L. For such a case, we hayg = T| =
|S|-|T|. Secondy is always taken between disjoint sets, because the operandzref
constructed by-product over different flags.

The answer set of the query can be calculated from the result of QUERY,RUN
applied to the root node, namety= QUERY-RUN, (root;). For eachy € F4, recall
that the set[g, 1 - - 1] is the set of tuples such that “if the tree is marked according to
the tuple, A reaches the statgat the root node”, which is by definition the answer set.

Theorem 2. ¢ 4 (t) = U, er, QUERY-RUN,(root,)[q, 11 - - - 11].

Proof (sketch; for more detail, consult Claim 1 of [QDet vy, ..., v, € V; to be fixed
and p be the unique run on the treeark(t, vq,...,v,) by A. Letv € V;. For each
1, if v <; v; then letu; = v; and3; = 1. Otherwise letu; = 1L andg; = 0. We
can prove by induction on the structurewthe following claim: if p(v) # ¢ the set
QUERY-RUN, (v)[g, b] is empty for anyb € B”, and if p(v) = g then(uy,...,u,) €
QUERY-RUN, (v)[g, b] if and only if b = /31 - - - 3,,. By applying the claim to the root
nodev = root;, we havg(vy, . . ., v,) € QUERY-RUN (root;)[g,11 - - - 11] if and only if
q=p(root;), which, together with the definition qﬁﬁ(A), proves the desired result™

5



What is the complexity of this algorithm? For each nade V4, the procedure
QUERY-RUN, is applied exactly once. In other words, the procedure is ci¢ithes.

In the body of the procedure, the case 61 labels is computationally harder; the
outer loop require$d 4| iterations, the inner loop fdy, b1, by requires3™ iterations,
and inside the loop, one operation and twe operations are required. Note that the
result of those set operations can be as large(@s") in the worst case. As long as we
represent such sets as a concrete collection of tuples, the operatead to enumerate

all its output elements. Hence it takes at le@$ft|™) time. Altogether, the total time
complexity is still high:O(37]3 4][t|" ). In fact, the complexity can be reduced by a 2-
pass preprocessing proposed in [9]. Their preprocessing detects, for each node, whether
or not each entry|q, b] really needs to be computed. By omitting the computations that
turned out not to be need, the complexity is reduce@ (8" 4|(|t| + a)) wherea is

the size of the answer set.

In the next section, we take a completely different approach for reducing the com-
plexity. Rather than changing the structure of the algorithm (like adding preprocessing
passes), we introduce a novel data structure for representing sets of tuples. Just by using
the data structure to represent sets in the QUERY-RUpkbcedure, we obtain linear
running time with respect t{#|, as well as a compact representation of the answer set.

4 SRED: Set Representation by Expression Dags

The idea of our compact representation is quite simple. To representavgetuse a
syntax tree- of an expression that evaluatesstd-or example, let; andrs be the root
nodes of the syntax-tree representations of seéds, (we writes; = [r1]). Then we
denote the set; U sy by the treer = cup(ry, r2). To denote the sdt; ] W ([r2] = [r3]),
we usecup(ry, star(ra,r3)). Note that, by allowing sharing of subtrees (i.e., using
syntaxdags instead of syntax-trees, which allows a node tikg(r,,r)), each opera-
tion can be executed in constant time, because itis just a creation of one new node. Since
the algorithm QUERY-RUN carries out set operations at me¥{3"|d 4||¢|) times, un-
der this representation of sets, the running time of QUERY-RUin O(3™|6.4][t]),
and so is the size of the output dag representing the answer set.

Let us formally explain the syntax-dag-based representation, which w8R&D
(Set Representation by Expression Dags) answer set of an-ary query over a tree
is represented by a dag of the following BNF, fér- - - 5,, € B™:

STp,...3, m=emp() | unit() | ne(NSTg,..3,)
NSTBV-B,L = Cup<’U7 NSTﬁl"'ﬁn’ NSTgl,..5n> withv € V;
| star(v, NST,...qp,s NST,...n,,) Withv € V; anda; @ ~; = f;
| sing(v, 1 - ) With v € V;

wherea®c = bifand onlyifa # candb = 1 ora = b = ¢ = 0. Note that, for enabling
fast navigation as will be explained later, we record the nodeV; at each operator.
Also for the efficiency, we specially treat the empty set (representeehipy)) and
theunit set({(L,..., L)}, represented bynit()), so that they do not occur at operand
positions. For examplesup(v, emp(),emp()) is ill-formed becausemp() occurs as



EVAL (r) EVAL-NE (r)
1. if r = emp() thenreturn 0 if » = cup(v, 1, r2) then
2: elseifr = unit() thenreturn {(L,---, L)} return EVAL-NE(r1) U EVAL-NE(72)
3. elseifr = ne(r’) then return EVAL-NE (+/) else ifr = star(v, r1, r2) then
UNION-AT (v, 71, 2) return EVAL-NE(r1) * EVAL-NE(r2)

else ifr; = ne(r}) and ro = ne(rj) then
return ne(star(v, 7, 75))

1 if 1 = emp() then else ifr = sing(v, b) then
2: return o return singleton (v, b)
3. elseifry = emp() then PRODUCT-AT (v, 71, 72)
4: return 1. if r1 = emp() or 72 = emp() then
5! elseifry = ne(r}) andry = ne(rj) then 2: return emp()
6: return ne(cup{v, r}, r} 3. elseifr; = unit({) then

1 2
SINGLETON-AT (v, B - - - ) 4 retum oy
1: it By By =0---0then 5! elseifre = unit() then
2: return unit() g: return ry

8:

3. elsereturnne(sing(v, B1 - - - Bn))

Fig. 1. Basic Operations on SRED

operands ofup. By avoidingemp() andunit() to occur at non-root position, we can
evaluate the syntax-dag by a simple recursion shown in Fig. 1, in the data complexity
proportional to the size of the answer set.

Lemma 3 (EVALUATION ). Assume the disjoint uniof U s, can be computed in con-
stant time and the produet * so can be computed in tim@(n|s; * s2|) for s1, 5o # 0.
ThenEVAL (r) (EVAL-NE(r), respectively) runs in timé (3*n|EVAL (r)|) (O(3*n
|EVAL-NE (r)|)) wherek is the maximum number sfar nodes in every path fromto
any leaf.

Proof. The proof is by induction on the structureafFor the case admp, unit, sing,
andcup nodes, it is trivial and hence omitted here. For the easestar(v,r1,r2), by
induction hypothesiss; = EVAL-NE(r;) andsy, = EVAL-NE () can be computed
in 3*~1n(|s;| + |s2|) steps. Since neither nor s, is empty, their sizes are less than or
equal to|s; * s3|. Thus,3*~1n(|s1| + |sz2|) is no more thar? - 3*~1n|s; * so|. By the
assumption, their *-product can be computed in time; * so|. Altogether, the total
time consumption for EVALr) in this case is3¥n|s; x so| = 3Fn|EVAL-NE(r)| as
desired. ad

The complexity assumption is satisfied by, for instance, representing the sets by a
doubly-linked list of elements. Disjoint union can be implemented by the list concate-
nation, and the-product is implemented by a double-loop over two operand sets. Note
that, the numbek of star node in a path is at most because thetar operation strictly
increases the number of naneoordinates in the element tuples.

The basic three operations used in the algorithm QUERY-RUiXe defined on
SRED as in Figure 1. Note that, to aveisip() andunit() to occur in operand positions,
we deal with the nodes specially. For example, sihice = s for any sets, when either
one of the operands of the UNION-AT operation iseanp() node, it returns the other
operand rather than constructing a new node. The correctness is easily verified by
induction on the structure of SRED, and we have the following results:

Lemma 4 (Correctness).EVAL (UNION-AT (v, r1,73)) = EVAL(r;) U EVAL(rg),
EVAL (PRODUCT-AT(v, 11, 7)) = EVAL () *EVAL (1), andEVAL (SINGLETON-
AT (v,b)) = singleton(v, b).



PROJ(4, 7) PROJ-NE(4, )

1. if r = emp() then 1. ifr = cup(v, 1, 7r2) then

2: return @ 2: return PROJ-NEi, r1) U PROJ-NKi, r2)

3. elseifr = ne(r’) then 3. elseifr = star(v, 1, m2) (With r, € NSTs, ...5,,) then

4. return PROJ-NHi, ') 4. if 3; = 1thenreturn PROJ-NK¢, r1) else return PROJ-NKq, r2)
5. elseifr = sing(v, 81 - - - Bn) then
6: return {v}

SELECT(4, u, ) SEL-NE (i, u, )

1. if r = emp() then 1. ifr = cup(v,r1,7r2) andv < u then

2: return emp() 2: return UNION-AT (v, SEL-NE(i, u, 1), SEL-NE(i, u, r2))

3! elseifr = ne(r’) then 3. elseifr = star(v, r1,72) With 71 € NSTs,...5,,) and v < w then

4. return SEL-NE(i, u, ') 4: if 3; = 1 then return PRODUCT-AT(v, SEL-NE(i, u, r1), 72)

else return PRODUCT-AT(v, 71, SEL-NE(Z, u, r2))
6: elseifr = sing(v, 31 - - - Bn) and v = u then
7: return SINGLETON-AT(v, By - - - Bi—108i41 -+ - Bn)
8: else returnemp()

Fig. 2. Projection and Selection on SRED

Theorem 5. Let S-QUERY-RUN, be a procedure obtained by replacifign the pro-
cedureQUERY-RUN; withemp(), zly with UNION-AT (v, z; 3/), 2:+y with PRODUCT-
AT (v, , y), and singletofw, b) with SINGLETON-AT(v, b). Then,S-QUERY-RUN, (¢)
runs in timeO(3™|d 4||¢|) and outputs a SREPwith at most3™|4 4||¢| nodes, such that
EVAL (r) = QUERY-RUN ().

Rather than enumerating the all elements of the answer set, we sometimes want to
extract a sub-part of the answer set. Here, we give an implementation of two important
operations on SRED, namelyroJECTIONand SELECTION For a sets of n-tuples

andl < i < n, PROJECTIONSg; = {v; | (v1,...,v,) € s} is the set ofi-th coor-
dinates ofs. Given an element (GELECTION Sfiu) = {(v1, 0 Vim1, Vg1, e ooy ) |
(v1,...,Vi—1,U, 041, ... ,Up) } IS the set of tuples ir such that the-th coordinate is

u. As an example of a use-case of the two operations, consider the following scenario:
first we applyPROJECTIONg; t0o an answer set, sort the result in some preferable order,
and with each element of the projected set, applyELECTION ;) to get the remain-

ing coordinates. In this way, we can enumerate the answers of queries in a user-specified
order, rather than in the default ordersfALUATION procedure.

On SRED representation of the answer sets, those two operations can be carried
out in time proportional to théeight of the input tree. That is, we do not need to
traverse the whole structure of SRED, nor to re-traverse the original input tree. Fig. 2
is the implementation, which is straightforwardly obtained from the distributivity of
projection and selection over disjoint union, etc.

Theorem 6 (PROJECTION. By using memoization, the proceduR0Jqi,r) com-
putes the seEVAL (r)q; in time O(6™h|6 4||EVAL (r)a;|) whereh is the height of
the original input treef.

Proof. Correctness is proved by induction on the structure, efhich is omitted here

due to the lack of the space. For the complexity, we assume the procedure PROJ-NE
to be memoized, i.e., if it is applied to the same arguments second time, it immediately
returns the previous result in constant time. We can implement such memoization by
using hash table. Then the body of the procedure PROJ-NE is executed at most once
per each node af. In fact, it can be shown that PROJ-NE is applied only to the nodes



that are an ancestor okag(v, - - -) node withv € EVAL (r)q;. By the definition of the
QUERY-RUN, procedure, the number of susing nodes is at most™|EVAL (r)a;|,
and for each of them, the number of the ancestors is at &dgb 4|. By using list-
concatenation for representing set-urtiothe body of PROJ-NE can be executed in
constant time. Hence, we obtain the desired complexity. O

Theorem 7 (SELECTION). By using memoization, the proceduB&L(i, u,r) com-
putes the SEEVAL (7);.,,) in time O(3™h[4 4]).

Proof. Correctness is proved by induction on the structure.dfor the complexity,
memoization ensures that the procedure SEL-NE is called at most once per each node
of r. By Lemma 1, the test < u succeeds only at the node constructed at an ancestor
(in the treet) of u. Hence, SEL-NE is executed only on the nodes constructed at an
ancestor of, or their direct child. Since the number of the ancestor nodes is at/most
and on each of such nodes at m#&'sl 4| SRED-node is created, SEL-NE is executed
only O(3™h|d 4|) times, which proves the desired complexity. O

As a corollary, given a tupléus, ..., u,), we can test whether a SRED contains the
tuple in timeO(3"nh|d 4|) by applyingSELECTION® times.

Generalizations to Unranked Trees So far, we have considered only binary trees. In
many applications, however, we are interestednirankedtrees with varying number

of child nodes. To deal with unranked trees, we encode such trees to binary trees. A
widely used encoding i&-ns encodingln a binary tree obtained as the fc-ns encoding

of an unranked tree, the first child of each node is mapped tdirstechild of the
corresponding node in the original unranked tree, and the second child of each node is
mapped to thaext siblingin the unranked tree. It is a folklore result that the encoding
preserves the regularity of queries, i.e., any regular query for unranked trees can be
converted to a regular query on the encoded trees. Hence, by first encoding the unranked
input trees and the queries to the binary-tree form and then running S-QUERY;RUN
we can compute the linear-size representation of the answer sets of regular queries. One
problem of fc-ns encoding is the time complexity of operations on SRED that depends
on the factorh, the height of the tree. Suppose an original unranked tree has small
heighth, and nodes with large number (=~ |¢|) of children (which is often the case

for most XML documents). The problem is that the height of the fc-ns encoded tree
is O(howp). To deal with such trees, we recommend to use another encoding, namely,
the bb encodingto reduce the complexity tO0(hg logwy). In bb encoding, the list of
children of each node is encoded tbaanced binary treavhose left-to-right sequence

of leaf nodes corresponds to the child sequence in the original tree. Such an encoding
also preserves regularity, because the ‘first-child’ and the ‘next-sibling’ relations remain
regular. Moreover, since the height of a balanced binary tree is in the logarithmic order
of the number of the leaves, the height of the bb-encoded tree redut¢adtog |¢|).

Application SRED is developed for the XML transformation language MTran [11]. Let
us illustrate the benefits of SRED by the following pseudo code for XML translation:

! precisely speaking, since it is natlisjointunion this time, list-concatenation based implemen-
tation may cause duplication. It, however, can be remove by a linear time ‘uniq’ algorithm.



{gather =z | z:<person> do
<row><col> {gather y | ( z//<name>/ y) do y}</col>
{gather =z | z:<person> & document-order( z, x) do <col> -..</col> }</row> }

The program takes a document containing a liskpérsor elements and generates
some triangular matrix table. The first query:£persor” lists up all the<persorr
elements, and for each of them, the second querj<tames/y)” selects a descendant
y of z labeled<name> (for simplicity, we assume that sugtuniquely exists). If we re-
ally run for eachr the second query, which takes in gen&pd|t|) time wherelt| is the
size of the tree, total running time of the query becomes quadratic, because there may
be linearly manypersor» nodes. Rather, as pointed out in [12], it is better to regard the
second query aslainary queryfor selecting pairgz, y). By using SRED, the answer
set of such a binary query can be computed in linear time. Furthermore, b¥ tre-
TION operation followed by th&VvALUATION operation, for eachk we can obtain the
corresponding in time O(hg log |¢|). Total running time reduces ©@(ho|t| log |¢|). SO
far, we could have used the FFG algorithm (or equivalently, query with SRED directly
followed by EVALUATION) for the same purpose, because its running time is linear un-
der the assumption thgtuniquely exists for each. Consider, then, the third query that
selects alkpersorr elements: precedinge in the document order (preorder). Simi-
larly, we run the query as a binary query for selecting p@its). In this case, the size
of the answer set is quadratic. If we use the FFG algorithm, we 6&&df) working
space for carrying out the binary-query based approach. While, with SRED, it requires
only O(Jt|) working space. This makes feasible to run the transformation over larger
inputs, which could not be done without SRED due to memory shortage.
Thanks This work was supported by the Japan Society for the Promotion of Science.
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