
Compact Representation for Answer Sets ofn-ary
Regular Queries

Kazuhiro Inaba1 and Haruo Hosoya1

The University of Tokyo,{kinaba,hahosoya }@is.s.u-tokyo.ac.jp

Abstract. An n-ary query over trees takes an input treet and returns a set ofn-
tuples of the nodes oft. In this paper, a compact data structure is introduced for
representing the answer sets ofn-ary queries defined by tree automata. Despite
that the number of the elements of the answer set can be as large as|t|n, our
representation allows to store the set using onlyO(3n|t|) space. Several basic
operations on the sets are shown to be efficiently executable on the representation.

1 Introduction

Finite state automaton is a well-known model for representing properties for trees and
strings. The class of queries definable by finite state automata is calledregular and is
widely used both in theory and in practice. A number of query formalisms are shown
to be equivalent or subsumed by regular queries. Examples of such formalisms include,
regular expression pattern [1], monadic second-order logic [2],µ-calculus [3], Core
XPath [4], monadic Datalog [5], boolean attribute grammar [6], etc.

In this paper, we are interested in the space complexity of then-ary queries defined
by tree automata. Ann-ary query over trees takes an input treet and returns a set of
n-tuples of the nodes oft. The number of elements in the answer set of ann-ary query
may be as large as|t|n where|t| is the number of the nodes oft. And, usually, stor-
ing a set of|t|n elements requires at leastc|t|n space wherec is the space required
to store a single element (in this case, onen-tuple of nodes). TheO(|t|n) space con-
sumption is unavoidable if the elements are chosen in a perfectly random manner; it
is a well-known consequence from the information theory. Note, however, we are in-
terested in more practical, less random queries. Queries defined by tree automata have
much more structure than random ones. By exploiting the structural characteristics of
regular queries, we can represent the answer sets in somecompressedform.

v0

v1

v2 v3

v4

v5 v6

t =

v2 v3 v5 v6

Let us explain the idea by an example. Consider the regular
query “select all pair of nodes(x, y) such thatx is in the left
subtree of the root node andy is in the right subtree of the root
node” with the input treet as in the figure. Then the answer set
consists of nine elements:{(v1, v4), (v2, v4), (v3, v4), (v1, v5),
(v2, v5), (v3, v5), (v1, v6), (v2, v6), (v3, v6)}. Obviously, if an in-
put tree hasn nodes both in the left and the right subtrees, the size of the answer set will
ben2, which is quadratic in the number2n+1 of the nodes. Our approach for avoiding
the quadratic blow-up is to represent the answer set by a symbolicexpression, instead
of computing the concrete list of elements. For this example, we represent the answer

set by the expression{v1, v2, v3} × {v4, v5, v6} where× denotes the product of two
sets. Counting the number of variablesvi and the operator, the length of the expression
is 7 instead of9. Analogously, for the general case withn nodes in both the left and the
right subtrees, the answer set can be represented by the expression of length2n + 1,
which consumes only linear space with respect to the size of the input tree.

The contribution of our work is in establishing the expression-based compact rep-
resentation as illustrated above. In fact, only two operators–·∪ (disjoint union) and∗ (a
slight variant ofproduct)–are necessary for achieving the linear-size representation of
the answer sets of regular queries. We show that for any fixedn-ary regular query and
an input treet, the answer set can always be represented by an expression on·∪ and∗
with every leaf expression being a singleton set of an input node. By sharing common
sub-expressions, the expression can be represented by a dag of sizeO(3n|t|). That is,
regardless of the arityn of the query, the data complexity with respect to the size|t|
of the input is always linear! The factor3n is sufficiently low for queries with smalln
such as binary or ternary queries, which are the most cases occur in practice (after all,
it is quite rare to run, say, a 100-ary query).

Furthermore, the dag representation is extended to a data structure namedSRED
(Set Representation by Expression Dags), which enjoys good time complexity as well
as the size-efficiency. The SRED representation of the answer set can always be com-
puted from the input treet in time O(3n|t|), regardless how large the actual answer
set is. Also, evaluation (or we could say,decompression) of a SRED to yield the con-
crete list of answer tuples can be done in timeO(3na), wherea is the number of the
answers. By combining these two steps, we obtain an algorithm for regular queries in
the optimal data complexityO(|t|+ a). More than that, on SRED, we can carry out the
following two important operationswithout decompressingit: (1) SELECTION: for an
answer sets, the SRED representation of the sets[i:u] = {(v1, . . . , vi−1, vi+1, . . . , vn) |
(v1, . . . , vi−1, u, vi+1, . . . , vn) ∈ s} can be computed in timeO(3nh) whereh is the
height of the input tree for binary trees and is the height timeslog |t| for unranked trees,
and (2) PROJECTION: the sets@i = {vi | (v1, . . . , vn) ∈ s} can be computed in time
O(6nh|s@i|). The key idea of SRED is to remember for every sub-expression the least
common ancestor of the nodes contained in the set represented by the sub-expression.
The information allows to locate the leaf expressions containing each input node in time
proportional only to the height of the expression-dag.

Related Work SRED has much similarity to the Complete Answer Aggregate (CAA)
introduced by Meuss, Schulz, and Bry [7] as a compact representation of answer sets
of queries. The size of a CAA isO(nh|t|) which is competitive to ourO(3n|t|). CAA
is also suitable for applying several operations such as membership testing. The main
advantage of our work is that it supports arbitrary regular queries, which is strictly
more expressive than the query language used in [7]. Though an attempt to represent
the answer sets of regular queries with CAA is given by Filiot and Tison [8] through
a decomposition of queries, the space complexity isO(n|t|dϕ) for some constantdϕ

depending on the query, which grows ton in the worst case. Besides, precise complexity
of operations like selection or projection for CAA was not estimated.

An algorithm (FFG algorithm) for answering regularn-ary queries in the optimal
time complexityO(|t| + a) is shown by Flum, Frick, and Grohe [9]. Since no compact

2

data structure was used in their work, the FFG algorithm requiresO(a) space to be
carried out. In fact, our algorithm can be regarded as a space-efficient variant of the
FFG algorithm. The expression dag generated in our algorithm precisely corresponds
to the set operations executed in the FFG algorithm. On the other hand, the class of
queries that the FFG algorithm can be applied is more general than our algorithm. The
FFG algorithm can also be used for queryingn-tuples ofsets ofnodes ofgraphsthat
have a tree decomposition, while our algorithm only supports queries forn-tuples of
nodes of trees. It is future work whether our compact representation of the answer sets
can be extended to more general class of queries.

2 Preliminaries

In this paper, we mainly considerbinary trees, in which every node has either zero or
two children. Generalization to the trees with other arity is briefly mentioned in the end
of Section 4. LetΣ be a finite alphabet that is a disjoint union of two alphabetsΣ(0) and
Σ(2). A binary tree(or simply, atree) overΣ is a tuplet = (Vt, label t, lt t, rt t, root t)
whereVt is the disjoint unionV (0)

t ·∪ V
(2)
t of finite sets ofnodes, label t : V (0)

t →
Σ(0) ·∪ V (2)

t → Σ(2) is the label function, lt t, rt t : V (2)
t → Vt is the left- andright-

child function respectively, androot t ∈ Vt is theroot node. We require a tree to satisfy
the following conditions: (1) rooted: there is no nodev ∈ Vt such thatlt t(v) = root t or
rt t(v) = root t, (2) acyclic: there is no nodev ∈ Vt that is reachable from itself by finite
applications oflt t andrt t, and (3) tree-formed: for any non-root nodev ∈ Vt \{root t},
there exists unique nodeu called theparentof v such thatlt t(u) = v ∨ rt t(u) = v. A
structure only satisfying (1) and (2) is called adag. For v1, v2 ∈ Vt, the binary order
relationv1 ≤t v2 is defined to hold if and only ifv2 is reachable fromv1 by zero or
finitely many applications oflt t andrt t. We usually omit the subscriptt if clear from
the context. By|t| we denote the number|Vt| of the nodes. We use the notationa⟨v1, v2⟩
to denote a nodev such thatlabel t(v) = a, lt t(v) = v1, andrt t(v) = v2.

For a treet, we assume that each nodev ∈ Vt can be stored on memory in constant
space independent from|t|. In practice, this implies the assumption that the treet fits in
the address space of the computer and each node can be represented by a single pointer.
We also assume that the operationslabel , lt , rt , and≤ can be executed in constant time.
In particular, we can test the relation≤ in constant time by, e.g., the preorder/postorder
numbering [10]. Again by the assumption that|t| fits in the address space, preorder and
postorder numbers can be stored in constant space.

A tree languageoverΣ is a set of trees overΣ. By TΣ , we denote the set of all
trees overΣ. An important class of tree languages are those defined in terms of tree
automata. Abottom-up deterministic tree automatonoverΣ is a tupleA = (QA, δA,
FA) whereQA is the set of states,δA : (Σ(0) ∪ Σ(2) × QA × QA) → QA is the
transition function, andFA ⊆ QA is the set of accepting states. The subscriptA is
omitted if clear from the context. Arun of a tree automatonA on the input treet is the
unique functionρ : Vt → QA such thatρ(v) = δA(label t(v)) if label t(v) ∈ Σ(0) and
ρ(v) = δA

(
label t(v), ρ(lt t(v)), ρ(rt t(v))

)
if label t(v) ∈ Σ(2). The automatonaccepts

t if and only if ρ(root t) ∈ FA. By L(A), we denote the set of trees accepted byA. A
tree language is said to beregular if it is equal toL(A) for some tree automatonA.

3

3 N -ary Regular Tree Queries

As a basis of our algorithm for computing the compact representation of answer sets, we
first explain a basic bottom-up algorithm for regular queries withO(|t|n+1) time com-
plexity, which has already been known in the literature. Our new algorithm is obtained
by changing the data structure used in the algorithm, as explained later in Section 4.

An n-aryqueryfor trees overΣ is a functionψ that maps each treet ∈ TΣ to a set of
n-tuples of its nodes. LetB = {0, 1},Σ(0)

n = Σ(0)×Bn,Σ(2)
n = Σ(2)×Bn, andΣn =

Σ
(0)
n ·∪ Σ(2)

n . For a tree languageL ⊆ Σn, ann-ary query defined byL is the function
ψL(t) = {(v1, . . . , vn) | mark(t, v1, . . . , vn) ∈ L} wheremark(t, v1, . . . , vn) is a tree
m = (Vt, labelm, lt t, rt t, root t) with labelm(v) = (label t(v), b1 · · · bn) wherebi = 1
if v = vi and0 otherwise. Intuitively, a query defined by a languageL selects a tuple
(v1, . . . , vn) if and only ifL contains a tree obtained by marking each selected nodevi

with 1. A query defined by a regular languageL is called aregular query. In the rest
of the paper, we assume the regular languageL to be given as a tree automatonA such
thatL = L(A). Nevertheless, our algorithm can be applied, without changing the data
complexity, to many other query formalisms as long as they define regular languages
by first compiling them into tree automata and then running the algorithm.

The most naive algorithm for a regularn-ary query is, to try all possible mark-
ings. Given an automatonA overΣn and a treet, for all (v1, . . . , vn)∈ V n

t we gen-
erate the marked treemark(t, v1, . . . , vn) and test whether it is accepted byA. If it is,
(v1, . . . , vn) is an answer and hence we output it. This algorithm takesO(|t|n+1) time,
because computing each run ofA takesO(|t|) time and we try|t|n runs in total.

Another approach is to try all marking parallelly by a single bottom-up run. The
following recursive procedure QUERY-RUNA takes a nodev of t and computes a table
containing the result of the parallel marking run.

QUERY-RUNA(v)
1: r ← new 2-dimensional array of size|QA| × 2n with each element initialized to∅
2: if label(v) ∈ Σ(0) then
3: for each ((label(v), b0) 7→ q0) ∈ δA do
4: r[q0, b0]← singleton(v, b0)

5: else iflabel(v) ∈ Σ(2) then
6: r1 ← QUERY-RUNA(lt(v)); r2 ← QUERY-RUNA(rt(v))
7: for each ((label(v), b0), q1, q2 7→ q0) ∈ δA do
8: for each disjoint b0, b1, b2 in 00 . . . 00 to 11 . . . 11 do
9: r[q0, b0|b1|b2]← r[q0, b0|b1|b2] ·∪ singleton(v, b0) ∗ r1[q1, b1] ∗ r2[q2, b2]

10: return r

By singleton(v, β1 · · ·βn) we denote the singleton set{(u1, . . . , un)} whereui = v if
βi = 1 andui = ⊥ if βi = 0. Here,⊥ is a special symbol not contained inVt. In line
7, for each disjoint iterates over pairs of form(b1 = β11 · · ·β1n, b2 = β21 · · ·β2n) ∈
(Bn)2 such that for all1 ≤ i ≤ n, at most one of{β0i, β1i, β2i} is 1, with β01 · · ·β0n =
b0. The operator| is for bitwise-or and·∪ is disjoint union of sets (the operands are
indeed disjoint, as explained later). The operator∗ is a kind of “product” operation that
combines two sets of tuples, defined as follows:S∗T = {(u1, · · · , un) | (s1, · · · , sn) ∈
S, (t1, . . . , tn) ∈ T, ∀i : (ui = si ∧ ⊥ = ti) ∨ (⊥ = si ∧ ui = ti)}. For example,
{(v1,⊥,⊥), (v2,⊥,⊥)} ∗ {(⊥,⊥, v3), (⊥,⊥, v4)} is equal to{(v1,⊥, v3), (v1,⊥, v4),
(v2,⊥, v3), (v2,⊥, v4)}. Let us remark that we never take∗-product of sets that have
tuples with non-⊥ nodes on the same position, as will be shown in Lemma 1.

4

Let us explain how the algorithm works. Letr = QUERY-RUNA(v) for a node
v ∈ Vt. For eachq ∈ QA andb = β1 · · ·βn ∈ Bn, r[q, b] is a set ofn-tuples over
the setVt ∪ {⊥}. A tuple in (Vt ∪ {⊥})n is called apartial answerto the query. For
example,(v1,⊥) is a partial answer that selects the nodev1 as the first coordinate and
leaves the second coordinate to be selected later. Intuitively,r[q, b] is the set of partial
answersα such that, if a tree is marked according toα, then at the nodev, the run of
the automatonA reaches the stateq. For example, if(v1,⊥) ∈ r[q, b], it means that “if
the nodev1 is marked as the first component of the answer and no node in the subtree
underv is marked as the second component,A reaches the stateq at nodev”. As an
example, let us assumev to be a leaf node labeledσ ∈ Σ(0) andA to define a binary
query. SupposeδA has the following four rules:δA((σ, 00)) = q1, δA((σ, 01)) = q2,
δA((σ, 10))=q1, andδA((σ, 11))=q2. Then, the tabler=QUERY-RUNA(v) is:

r[q1, 00] = {(⊥,⊥)} r[q1, 01] = ∅ r[q1, 10] = {(v,⊥)} r[q1, 11] = ∅
r[q2, 00] = ∅ r[q2, 01] = {(⊥, v)} r[q2, 10] = ∅ r[q2, 11] = {(v, v)}.

The setr[q1, 00] contains(⊥,⊥) because if we do not select any node belowv, the
automaton reaches the stateq1. On the other hand, the setr[q2, 00] is empty, because
we cannot reach the stateq2 at nodev if we do not select any node. Similarly,r[q1, 01]
is empty, because we cannot reach the stateq1 if we select the second coordinate of the
answer. On the other hand, we haver[q2, 01] = {(⊥, v)}, because if we choosev as the
second coordinate, the automaton reaches the stateq2.

The indexb of r calledflag denotes the already selected coordinates. Formally, the
following lemma can be shown by induction on the structure of the tree rooted atv.

Lemma 1. Let r = QUERY-RUNA(v) for somev and(u1, . . . , un) ∈ r[q, β1 · · ·βn].
For all 1 ≤ i ≤ n, we have (ui ∈ Vt andv ≤t ui) if βi = 1, andui = ⊥ if βi = 0.

The lemma ensures the two disjointness in the procedure QUERY-RUNA. First, the∗-
product is always taken between the sets with disjoint selected-coordinates. That is,
we need to computeS ∗ T only for the setsS, T such that(. . . , vi, . . .) ∈ S and
(. . . , ui, . . .) ∈ T implies eithervi or ui is ⊥. For such a case, we have|S ∗ T | =
|S| · |T |. Second,·∪ is always taken between disjoint sets, because the operands of·∪ are
constructed by∗-product over different flags.

The answer set of the query can be calculated from the result of QUERY-RUNA
applied to the root node, namely,r = QUERY-RUNA(root t). For eachq ∈ FA, recall
that the setr[q, 1 · · · 1] is the set of tuples such that “if the tree is marked according to
the tuple,A reaches the stateq at the root node”, which is by definition the answer set.

Theorem 2. ψL(A)(t) =
∪

q∈FA
QUERY-RUNA(root t)[q, 11 · · · 11].

Proof (sketch; for more detail, consult Claim 1 of [9]).Let v1, . . . , vn ∈ Vt to be fixed
andρ be the unique run on the treemark(t, v1, . . . , vn) by A. Let v ∈ Vt. For each
i, if v ≤t vi then letui = vi andβi = 1. Otherwise letui = ⊥ andβi = 0. We
can prove by induction on the structure ofv the following claim: ifρ(v) ̸= q the set
QUERY-RUNA(v)[q, b] is empty for anyb ∈ Bn, and ifρ(v) = q then(u1, . . . , un) ∈
QUERY-RUNA(v)[q, b] if and only if b = β1 · · ·βn. By applying the claim to the root
nodev=root t, we have(v1, . . . , vn)∈QUERY-RUNA(root t)[q,11 · · · 11] if and only if
q=ρ(root t), which, together with the definition ofψL(A), proves the desired result.⊓⊔

5

What is the complexity of this algorithm? For each nodev ∈ Vt, the procedure
QUERY-RUNA is applied exactly once. In other words, the procedure is called|t| times.
In the body of the procedure, the case forΣ(2) labels is computationally harder; the
outer loop requires|δA| iterations, the inner loop forb0, b1, b2 requires3n iterations,
and inside the loop, one·∪ operation and two∗ operations are required. Note that the
result of those set operations can be as large asO(|t|n) in the worst case. As long as we
represent such sets as a concrete collection of tuples, the operation∗ need to enumerate
all its output elements. Hence it takes at leastO(|t|n) time. Altogether, the total time
complexity is still high:O(3n|δA||t|n+1). In fact, the complexity can be reduced by a 2-
pass preprocessing proposed in [9]. Their preprocessing detects, for each node, whether
or not each entryr[q, b] really needs to be computed. By omitting the computations that
turned out not to be need, the complexity is reduced toO(3n|δA|(|t| + a)) wherea is
the size of the answer set.

In the next section, we take a completely different approach for reducing the com-
plexity. Rather than changing the structure of the algorithm (like adding preprocessing
passes), we introduce a novel data structure for representing sets of tuples. Just by using
the data structure to represent sets in the QUERY-RUNA procedure, we obtain linear
running time with respect to|t|, as well as a compact representation of the answer set.

4 SRED: Set Representation by Expression Dags

The idea of our compact representation is quite simple. To represent a sets, we use a
syntax treer of an expression that evaluates tos. For example, letr1 andr2 be the root
nodes of the syntax-tree representations of setss1 ands2 (we writes1 = Jr1K). Then we
denote the sets1 ·∪ s2 by the treer = cup⟨r1, r2⟩. To denote the setJr1K ·∪ (Jr2K∗ Jr3K),
we usecup⟨r1, star⟨r2, r3⟩⟩. Note that, by allowing sharing of subtrees (i.e., using
syntax-dags instead of syntax-trees, which allows a node likecup⟨r1, r1⟩), each opera-
tion can be executed in constant time, because it is just a creation of one new node. Since
the algorithm QUERY-RUNA carries out set operations at mostO(3n|δA||t|) times, un-
der this representation of sets, the running time of QUERY-RUNA is in O(3n|δA||t|),
and so is the size of the output dag representing the answer set.

Let us formally explain the syntax-dag-based representation, which we callSRED
(Set Representation by Expression Dags). An answer set of ann-ary query over a treet
is represented by a dag of the following BNF, forβ1 · · ·βn ∈ Bn:

STβ1···βn ::= emp⟨⟩ | unit⟨⟩ | ne⟨NSTβ1···βn⟩
NSTβ1···βn ::= cup⟨v,NSTβ1···βn ,NSTβ1···βn⟩ with v ∈ Vt

| star⟨v,NSTα1···αn ,NST γ1···γn⟩ with v ∈ Vt andαi ⊕ γi = βi

| sing⟨v, β1 · · ·βn⟩ with v ∈ Vt

wherea⊕c = b if and only ifa ̸= c andb = 1 ora = b = c = 0. Note that, for enabling
fast navigation as will be explained later, we record the nodev ∈ Vt at each operator.
Also for the efficiency, we specially treat the empty set (represented byemp⟨⟩) and
theunit set({(⊥, . . . ,⊥)}, represented byunit⟨⟩), so that they do not occur at operand
positions. For example,cup⟨v, emp⟨⟩, emp⟨⟩⟩ is ill-formed becauseemp⟨⟩ occurs as

6

EVAL (r)
1: if r ≡ emp⟨⟩ then return ∅
2: else ifr ≡ unit⟨⟩ then return {(⊥, · · · ,⊥)}
3: else ifr ≡ ne⟨r′⟩ then return EVAL-NE(r′)

UNION-AT (v, r1, r2)
1: if r1 ≡ emp⟨⟩ then
2: return r2
3: else ifr2 ≡ emp⟨⟩ then
4: return r1
5: else ifr1 ≡ ne⟨r′

1⟩ and r2 ≡ ne⟨r′
2⟩ then

6: return ne⟨cup⟨v, r′
1, r′

2⟩⟩
SINGLETON-AT (v, β1 · · · βn)

1: if β1 · · · βn = 0 · · · 0 then
2: return unit⟨⟩
3: else returnne⟨sing⟨v, β1 · · · βn⟩⟩

EVAL-NE (r)
1: if r ≡ cup⟨v, r1, r2⟩ then
2: return EVAL-NE(r1) ·∪ EVAL-NE(r2)
3: else ifr ≡ star⟨v, r1, r2⟩ then
4: return EVAL-NE(r1) ∗ EVAL-NE(r2)
5: else ifr ≡ sing⟨v, b⟩ then
6: return singleton(v, b)

PRODUCT-AT(v, r1, r2)
1: if r1 ≡ emp⟨⟩ or r2 ≡ emp⟨⟩ then
2: return emp⟨⟩
3: else ifr1 ≡ unit⟨⟩ then
4: return r2
5: else ifr2 ≡ unit⟨⟩ then
6: return r1
7: else ifr1 ≡ ne⟨r′

1⟩ and r2 ≡ ne⟨r′
2⟩ then

8: return ne⟨star⟨v, r′
1, r′

2⟩⟩

Fig. 1.Basic Operations on SRED

operands ofcup. By avoidingemp⟨⟩ andunit⟨⟩ to occur at non-root position, we can
evaluate the syntax-dag by a simple recursion shown in Fig. 1, in the data complexity
proportional to the size of the answer set.

Lemma 3 (EVALUATION). Assume the disjoint unions1 ·∪ s2 can be computed in con-
stant time and the products1 ∗s2 can be computed in timeO(n|s1 ∗ s2|) for s1, s2 ̸= ∅.
ThenEVAL(r) (EVAL-NE(r), respectively) runs in timeO

(
3kn|EVAL(r)|

)
(O

(
3kn

|EVAL-NE(r)|
)
) wherek is the maximum number ofstar nodes in every path fromr to

any leaf.

Proof. The proof is by induction on the structure ofr. For the case ofemp, unit, sing,
andcup nodes, it is trivial and hence omitted here. For the caser ≡ star⟨v, r1, r2⟩, by
induction hypothesis,s1 = EVAL-NE(r1) ands2 = EVAL-NE(r1) can be computed
in 3k−1n(|s1|+ |s2|) steps. Since neithers1 nors2 is empty, their sizes are less than or
equal to|s1 ∗ s2|. Thus,3k−1n(|s1| + |s2|) is no more than2 · 3k−1n|s1 ∗ s2|. By the
assumption, their *-product can be computed in timen|s1 ∗ s2|. Altogether, the total
time consumption for EVAL(r) in this case is3kn|s1 ∗ s2| = 3kn|EVAL-NE(r)| as
desired. ⊓⊔

The complexity assumption is satisfied by, for instance, representing the sets by a
doubly-linked list of elements. Disjoint union can be implemented by the list concate-
nation, and the∗-product is implemented by a double-loop over two operand sets. Note
that, the numberk of star node in a path is at mostn, because thestar operation strictly
increases the number of non-⊥ coordinates in the element tuples.

The basic three operations used in the algorithm QUERY-RUNA are defined on
SRED as in Figure 1. Note that, to avoidemp⟨⟩ andunit⟨⟩ to occur in operand positions,
we deal with the nodes specially. For example, since∅∪s = s for any sets, when either
one of the operands of the UNION-AT operation is anemp⟨⟩ node, it returns the other
operand rather than constructing a newcup node. The correctness is easily verified by
induction on the structure of SRED, and we have the following results:

Lemma 4 (Correctness).EVAL(UNION-AT(v, r1, r2)) = EVAL(r1) ·∪ EVAL(r2),
EVAL(PRODUCT-AT(v, r1, r2)) = EVAL(r1)∗EVAL(r2), andEVAL(SINGLETON-
AT(v, b)) = singleton(v, b).

7

PROJ(i, r)
1: if r ≡ emp⟨⟩ then
2: return ∅
3: else ifr ≡ ne⟨r′⟩ then
4: return PROJ-NE(i, r′)

SELECT(i, u, r)
1: if r ≡ emp⟨⟩ then
2: return emp⟨⟩
3: else ifr ≡ ne⟨r′⟩ then
4: return SEL-NE(i, u, r′)

PROJ-NE(i, r)
1: if r ≡ cup⟨v, r1, r2⟩ then
2: return PROJ-NE(i, r1) ∪ PROJ-NE(i, r2)
3: else ifr ≡ star⟨v, r1, r2⟩ (with r1 ∈ NSTβ1···βn) then
4: if βi = 1 then return PROJ-NE(i, r1) else return PROJ-NE(i, r2)
5: else ifr ≡ sing⟨v, β1 · · · βn⟩ then
6: return {v}
SEL-NE(i, u, r)

1: if r ≡ cup⟨v, r1, r2⟩ and v ≤ u then
2: return UNION-AT(v, SEL-NE(i, u, r1), SEL-NE(i, u, r2))
3: else ifr ≡ star⟨v, r1, r2⟩ (with r1 ∈ NSTβ1···βn) and v ≤ u then
4: if βi = 1 then return PRODUCT-AT(v, SEL-NE(i, u, r1), r2)
5: else return PRODUCT-AT(v, r1, SEL-NE(i, u, r2))
6: else ifr ≡ sing⟨v, β1 · · · βn⟩ and v = u then
7: return SINGLETON-AT(v, β1 · · · βi−10βi+1 · · · βn)
8: else returnemp⟨⟩

Fig. 2.Projection and Selection on SRED

Theorem 5. Let S-QUERY-RUNA be a procedure obtained by replacing∅ in the pro-
cedureQUERY-RUNA with emp⟨⟩,x ·∪y withUNION-AT(v, x, y),x∗y withPRODUCT-
AT(v, x, y), and singleton(v, b) with SINGLETON-AT(v, b). Then,S-QUERY-RUNA(t)
runs in timeO(3n|δA||t|) and outputs a SREDr with at most3n|δA||t| nodes, such that
EVAL(r) = QUERY-RUNA(t).

Rather than enumerating the all elements of the answer set, we sometimes want to
extract a sub-part of the answer set. Here, we give an implementation of two important
operations on SRED, namely,PROJECTIONand SELECTION. For a sets of n-tuples
and1 ≤ i ≤ n, PROJECTIONs@i = {vi | (v1, . . . , vn) ∈ s} is the set ofi-th coor-
dinates ofs. Given an element u,SELECTION s[i:u] = {(v1, . . . , vi−1, vi+1, . . . , vn) |
(v1, . . . , vi−1, u, vi+1, . . . , vn)} is the set of tuples ins such that thei-th coordinate is
u. As an example of a use-case of the two operations, consider the following scenario:
first we applyPROJECTION@1 to an answer set, sort the result in some preferable order,
and with each elementu of the projected set, applySELECTION [1:u] to get the remain-
ing coordinates. In this way, we can enumerate the answers of queries in a user-specified
order, rather than in the default order ofEVALUATION procedure.

On SRED representation of the answer sets, those two operations can be carried
out in time proportional to theheight of the input tree. That is, we do not need to
traverse the whole structure of SRED, nor to re-traverse the original input tree. Fig. 2
is the implementation, which is straightforwardly obtained from the distributivity of
projection and selection over disjoint union, etc.

Theorem 6 (PROJECTION). By using memoization, the procedurePROJ(i, r) com-
putes the setEVAL(r)@i in timeO(6nh|δA||EVAL(r)@i|) whereh is the height of
the original input treet.

Proof. Correctness is proved by induction on the structure ofr, which is omitted here
due to the lack of the space. For the complexity, we assume the procedure PROJ-NE
to be memoized, i.e., if it is applied to the same arguments second time, it immediately
returns the previous result in constant time. We can implement such memoization by
using hash table. Then the body of the procedure PROJ-NE is executed at most once
per each node ofr. In fact, it can be shown that PROJ-NE is applied only to the nodes

8

that are an ancestor of asing⟨v, · · ·⟩ node withv ∈ EVAL(r)@i. By the definition of the
QUERY-RUNA procedure, the number of suchsing nodes is at most2n|EVAL(r)@i|,
and for each of them, the number of the ancestors is at most3nh|δA|. By using list-
concatenation for representing set-union1, the body of PROJ-NE can be executed in
constant time. Hence, we obtain the desired complexity. ⊓⊔

Theorem 7 (SELECTION). By using memoization, the procedureSEL(i, u, r) com-
putes the setEVAL(r)[i:u] in timeO(3nh|δA|).

Proof. Correctness is proved by induction on the structure ofr. For the complexity,
memoization ensures that the procedure SEL-NE is called at most once per each node
of r. By Lemma 1, the testv ≤ u succeeds only at the node constructed at an ancestor
(in the treet) of u. Hence, SEL-NE is executed only on the nodes constructed at an
ancestor ofu, or their direct child. Since the number of the ancestor nodes is at mosth
and on each of such nodes at most3n|δA| SRED-node is created, SEL-NE is executed
onlyO(3nh|δA|) times, which proves the desired complexity. ⊓⊔

As a corollary, given a tuple(u1, . . . , un), we can test whether a SRED contains the
tuple in timeO(3nnh|δA|) by applyingSELECTIONn times.

Generalizations to Unranked TreesSo far, we have considered only binary trees. In
many applications, however, we are interested inunrankedtrees with varying number
of child nodes. To deal with unranked trees, we encode such trees to binary trees. A
widely used encoding isfc-ns encoding. In a binary tree obtained as the fc-ns encoding
of an unranked tree, the first child of each node is mapped to thefirst child of the
corresponding node in the original unranked tree, and the second child of each node is
mapped to thenext siblingin the unranked tree. It is a folklore result that the encoding
preserves the regularity of queries, i.e., any regular query for unranked trees can be
converted to a regular query on the encoded trees. Hence, by first encoding the unranked
input trees and the queries to the binary-tree form and then running S-QUERY-RUNA,
we can compute the linear-size representation of the answer sets of regular queries. One
problem of fc-ns encoding is the time complexity of operations on SRED that depends
on the factorh, the height of the tree. Suppose an original unranked tree has small
heighth0 and nodes with large numberw0(≃ |t|) of children (which is often the case
for most XML documents). The problem is that the height of the fc-ns encoded tree
isO(h0w0). To deal with such trees, we recommend to use another encoding, namely,
thebb encoding, to reduce the complexity toO(h0 logw0). In bb encoding, the list of
children of each node is encoded to abalanced binary treewhose left-to-right sequence
of leaf nodes corresponds to the child sequence in the original tree. Such an encoding
also preserves regularity, because the ‘first-child’ and the ‘next-sibling’ relations remain
regular. Moreover, since the height of a balanced binary tree is in the logarithmic order
of the number of the leaves, the height of the bb-encoded tree reduces toO(h0 log |t|).

Application SRED is developed for the XML transformation language MTran [11]. Let
us illustrate the benefits of SRED by the following pseudo code for XML translation:

1 Precisely speaking, since it is not adisjointunion this time, list-concatenation based implemen-
tation may cause duplication. It, however, can be remove by a linear time ‘uniq’ algorithm.

9

{gather x | x:<person> do
<row><col> {gather y | (x//<name>/ y) do y}</col>
{gather z | z:<person> & document-order(z, x) do <col> · · ·</col> }</row> }

The program takes a document containing a list of<person> elements and generates
some triangular matrix table. The first query “x:<person>” lists up all the<person>
elements, and for each of them, the second query “(x//<name>/y)” selects a descendant
y of x labeled<name> (for simplicity, we assume that suchy uniquely exists). If we re-
ally run for eachx the second query, which takes in generalO(|t|) time where|t| is the
size of the tree, total running time of the query becomes quadratic, because there may
be linearly many<person> nodes. Rather, as pointed out in [12], it is better to regard the
second query as abinary queryfor selecting pairs(x, y). By using SRED, the answer
set of such a binary query can be computed in linear time. Furthermore, by theSELEC-
TION operation followed by theEVALUATION operation, for eachx we can obtain the
correspondingy in timeO(h0 log |t|). Total running time reduces toO(h0|t| log |t|). So
far, we could have used the FFG algorithm (or equivalently, query with SRED directly
followed byEVALUATION) for the same purpose, because its running time is linear un-
der the assumption thaty uniquely exists for eachx. Consider, then, the third query that
selects all<person> elementsz precedingx in the document order (preorder). Simi-
larly, we run the query as a binary query for selecting pairs(x, z). In this case, the size
of the answer set is quadratic. If we use the FFG algorithm, we needO(|t|2) working
space for carrying out the binary-query based approach. While, with SRED, it requires
only O(|t|) working space. This makes feasible to run the transformation over larger
inputs, which could not be done without SRED due to memory shortage.
Thanks This work was supported by the Japan Society for the Promotion of Science.

References

1. Hosoya, H., Pierce, B.C.: Regular expression pattern matching for XML. Journal of Func-
tional Programming13 (2003) 961–1004

2. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a
decision problem of second-order logic. Mathematical Systems Theory2 (1968) 57–811

3. Niwinski, D.: Fixed points vs. infinite generation. In: LICS. (1988) 402–409
4. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries. ACM

Transactions on Database Systems30 (2005) 444–491
5. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for Web

information extraction. Journal of the ACM51 (2004) 74–113
6. Neven, F., Bussche, J.V.D.: Expressiveness of structured document query languages based

on attribute grammars. Journal of the ACM49 (2002) 56–100
7. Meuss, H., Schulz, K.U., Bry, F.: Towards aggregated answers for semistructured data. In:

International Conference on Database Theory (ICDT). (2001) 346–360
8. Filiot, E., Tison, S.: Regularn-ary queries in trees and variable independence. In: Interna-

tional Conference on Theoretical Computer Science (TCS). (2008) 429–443
9. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. Journal of the

ACM 49 (2002) 716–752
10. Dietz, P.F.: Maintaining order in a linked list. In: STOC. (1982) 122–127
11. Inaba, K., Hosoya, H.: XML transformation language based on monadic second order logic.

In: Programming Language Technologies for XML (PLAN-X). (2007) 49–60
12. Berlea, A., Seidl, H.: Binary queries for document trees. Nordic Journal of Computing11

(2004) 41–71

10

