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ABSTRACT

Cursor model is a relatively new approach for XML processing. In this model, a cursor

acts like a lens that focuses on one node. You can freely move the cursor back and forth in

an XML document, and edit the node it indicates. This model can be easily implemented

in imperative language like C or Java, by using a pointer to subtree in the XML tree as

the cursor. In a fully applicative setting, however, this simple scheme does not work since

subtree modification through pointers breaks the principle of referential transparency.

We propose a purely functional data structure named “Slit” to realize a cursor on a tree

efficiently in applicative manner. Slit is similar to the zipper data structure introduced

by Huet, but has some improvements compared to the zipper in terms of efficiency and

expressiveness while handling a tree with variadic child nodes. Using the slit, we implement

an XML processing framework based on the cursor model. We also show a generalization

of this framework to give an XML view for non XML data.
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Chapter 1

Introduction

Recently, XML [6] has become widely used in many fields of computer industry,

especially in the field of the Internet technology. For example, SOAP (Simple

Object Access Protocol) and WSDL (Web Services Description Language), which

are the data formats based on XML, are the standard protocol for web services.

The ontology system RDF (Resource Description Framework) uses XML as its

syntax, and is the main technology for the Semantic Web concept. This markup

language is commonly adopted as a common structured data storage format as well

as the use in the web.

To cover these increasing needs, many XML processing models for programming

languages have been developed. The most famous model named DOM (Document

Object Model) [7] represents a document as a tree structure, and allows a program

to update the content of XML documents dynamically through the manipulation of

DOM tree structure. This model is general enought to carry out any operation on

XML documents, but it requires some runtime cost to keep the whole tree structure

on memory. Another well-known example is the SAX (Simple API for XML) [8].

In this model, parsing events like start and end of XML-elements are reported to

the application program through callbacks instead of creating the whole tree struc-

ture. Accessing documents through SAX is limited in the sense that it is read-only

and sequential, but this model is so simple that a lightweight implementations is

possible. Other than those above, several models [9] with intermediate character-

istics, such as ‘Pull model’ or ‘Cursor model’ have also been designed. They are
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more flexible than the SAX, and less expensive than the DOM. These new models

are not just an theoretical discover, but they have working implementations in a

number of languages such as Java, C#, C++, and so on.

Most of those implementations, however, heavily relies on the imperative feature

of the target languages. In other words, they are implemented by means of the

destructive update of data structures. This implies that there is no simple way

to port them to purely applicative settings. On the other hand, commonly used

XML representations in functional programming languages are basically just a

plain algebraic tree, and in some cases this is less efficient and less intuitive than

imperative pointer-based tree of the DOM, especially when it involves the local

modification of the tree structure.

In this paper, we show a purely applicative implementation of the cursor model

XML processing library which enables us to naturally and efficiently write down

the operations with local tree modifications in applicative manner. The new tree

manipulation method we developed and used for this library is discussed with

special emphasis.

The organization of this paper is as follows. Chapter 2 briefly reviews the cursor

model for XML processing, which model we adopt as the design of our framework.

Relationship between this model and applicative programming is also discussed.

Chapter 3 explains two methods to achieve the purely applicative cursor on tree

structure. One is the representation of focused-trees introduced by Huet [1, 2]

called “Zipper”. The another is the new data structure we developed, named “Slit”.

This makes refinements on the zipper in terms of efficiency and expressiveness while

handling a tree with variadic child nodes. XML document trees fall into this type

of trees. Chapter 4 shows an implementation of a set of APIs for XML processing

based on the slit, and its generalization to handle non-XML data by giving them

XML-views. Chapter 5 is an example of utilization of our framework. Chapter 6

discuss them. All source code is written in the Objective Caml system [12], but

the code is easily traslatable to any other programming languages whether it is

functional or not.
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Chapter 2

Cursor Model

2.1 Overview

Cursor model is a relatively new approach for XML processing. In this model, all

XML manipulations are done through a cursor which points some position in an

XML document tree. Set of APIs typically provided in this model is categorized

into two types. One is for cursor navigation, and the another is for editing the

content of the document.

Cursor navigation API provides the functionalities to move the position of a

cursor in an XML document tree. Four primitive operations which belongs to this

category are “move to the first child of current node”, “move to parent node”,

“move to following sibling node”, or “move to preceding sibling node” relative to

the current position of the cursor.

Editing API provides the functionalities to modify or obtain some information

from the target XML document through the cursor. In this category, there are

primitive operations which only affects on the element pointed by the cursor, such

as “get the name of the element”, “get the list of attributes set to the element”,

“rewrite the name of the element”, or “assign an attribute to the element”. In-

sertion and deletion of XML elements are also supported. For instance, “insert a

new node before the cursor”, “insert a new node after the cursor”, or “remove the

pointed element from document”.

And on top of these bases, several convenient operations can also be implemented,
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such as “move to the root of the XML tree” or “move to the first child with specified

element name”.

Most recently published XML frameworks tend to be based on the cursor model.

XPathNavigator class in Microsoft .NET Framework 1.0 [13] is a read-only instance

of the XML cursor, and this class has been announced to have the methods for

write access in the coming .NET 2.0. Another example is XMLBeans [14] from

Apache Project. Its XMLCursor interface models the XML cursor stated above.

2.2 Advantages compared to other models

The XML cursor model is intended to be a happy medium between the SAX-like

‘push model’ and the DOM-like ‘tree model’. It shares some advantages of those

two models and some drawbacks of those.

Just like tree model APIs, cursor model allows us to navigate and manipulate an

XML document in any order we want by the basic four moving APIs. This is the

difference from SAX-like API in which we have to access the elements in sequential

order only, and have no way to modify the original XML document. However,

unlike the tree model APIs, cursor model has no need to map all XML elements to

some object on memory at one time. This is because all this model has to provide

is the access to the ‘current’ element pointed by the cursor. This fact implies that

XML cursor APIs have a potential to be more efficient in terms of both time and

space than tree model APIs.

Moreover, limiting the access only to local elements around a cursor leads to an

important generalization of the framework. Since there is no need to create node

objects per each informative item in the XML document, it is more easier to create

an XML view on non-XML data without converting whole underlying non-XML

data to the XML tree form. Just by supplying a few operations like “move up”,

“move next”, “get value”, and “set value” etc., many data structures can be treated

by single implementation based on the cursor model APIs without distinguishing

the actual data format. For example, we can read address data from an address

book stored in a comma separated text (CSV) in the same way from an XML file

using the cursor API.
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Note that this generalization is not completely general. We can insert an addi-

tional element into a person element in XML address book without affecting the

other person elements. But it is not possible to insert an additional field into a

person data in CSV address book without affecting the others, because we have

to keep the number and the order of fields to be same among all entries in one

CSV file. So the same cursor operation ‘insert’ may behave differently depending

on the underlying structure. Cursor based data processing is general to the extent

that every cursor operations used in the program is common among all target data

structure. In this example, read from addressbook and modification of existing

fields is generally implementable for both XML and CSV.

Last of all, we claim that one of the advantages of cursor model is its suitabil-

ity for XML processing in applicative programming languages as discussed in the

following section.

2.3 Feasibility in applicative setting

A data structure is called applicative (or functional) if it does not rely on de-

structive update of the structure for its manipulation. This kind of data structure

is useful not only in ‘purely functional’ programming languages but also in popular

imperative languages as a common practice like Immutable Object [10] or as a

basic component to assure the Exception Safety [11].

Standard way to represent an XML document in applicative setting is to use an

algebraic tree:

¶ ³
(* simplified for ease of reading *)

type xml = PCDATA of string

| Element of (name * attribute list) * xml listµ ´
Figure 2.1: Type of XML tree

This representation, however, is awkward in some situations. Three similar op-

erations “find a node with some condition and modify it”, “find a node with some
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condition and remove it”, and “find a node with some condition and duplicate it”

cannot share the implementations of “find a node” part efficiently, because the

found node with type xml have no clue to the XML document tree which the node

belongs to.

This problem may be solved by adding a pointer to parent to each node, but

without the destructive update, we can not implement a pointer to parent in naive

manner. Subtle methods has been developed in this area by Kiselyov [5], but they

incur some overheads and limitations. After all, the problem seems to be inevitable

if we hold the whole tree in above representation and use the sub node to denote

each element.

Let us consider the cursor model instead of the tree model approach. The cursor

model does not require to represent the whole document as a tree structure. What

it require is only a ‘cursor’ which can go up and down in the tree. So the pointer

to parent does not necessarily mean the cycle in the data structure. Therefore, it

should be implementable even in purely applicative programming languages. In the

next chapter, we describe the method to implement the cursor model in applicative

manner in detail.
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Chapter 3

Applicative Cursor on Trees

In this chapter, methods to implement an XML cursor are examined. First, we

review the zipper data structure introduce by Huet [1]. This is a concise repre-

sentation for the cursor on algebraic data types, but reveals some drawbacks when

applied to a cursor on XML. Though several works to enhance the zipper was done

[3, 4], their aim was to make the zipper generic among all algebraic datatypes,

and not meant to solve those problems. We propose a new data structure named

“Slit” to resolve the shortcomings. This data structure is an improved version of

the zipper for a variadic tree.

3.1 The Zipper data structure

Huet proposed a data structure “Zipper” as an efficient and elegant represen-

tation for a tree together with a focused subtree. We briefly review this data

structure, and discuss whether it is suitable as the cursor on an XML document

tree.

3.1.1 Zipper for a list and a binary tree

Normally, a tree data structure is represented as a node which recursively points

child trees. The ‘root’ node is used in order to refer to the whole tree.
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¶ ³
type int_tree = Leaf of int

| Node of int_tree * int_treeµ ´
Figure 3.1: Type of binary trees

In the zipper style, a tree is represented as a pair of a subtree and its one-hole

context. The elegant solution to hold the context of a subtree is shown in Figure

3.3. It is a kind of pointer-reversal technique.

Figure 3.2: Holding a tree as a pair of subtree and its context

¶ ³
type it_subtree = int_tree

type it_context = NoPath

| PathL of it_context * int_tree

| PathR of int_tree * it_context

type it_zipper = it_context * it_subtreeµ ´
Figure 3.3: Type of zipper for binary trees

There are many possible ways to divide one tree to a subtree and its context. This

degree of freedom allows us to “focus” on one part of the whole tree. Operations

on the focus such as removing the subtree or replacing with a new subtree can be

very efficiently implemented. Operations to move the focus locally in the tree is

also simple. See Figure 3.4 and Figure 3.5.
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¶ ³
(* type: it_zipper -> it_zipper *)

let left = function

| PathR(t1,p), t2 -> PathL(p,t2), t1

| _ -> failwith "cannot go left"

let right = function

| PathL(p,t2), t1 -> PathR(t1,p), t2

| _ -> failwith "cannot go right"

let up = function

| PathL(p,t2), t1

| PathR(t1,p), t2 -> p, Node(t1,t2)

| _ -> failwith "cannot go up"

let down_left = function

| p, Node(t1,t2) -> PathL(p,t2), t1

| _ -> failwith "cannot go down"

let down_right = function

| p, Node(t1,t2) -> PathR(t1,p), t2

| _ -> failwith "cannot go down"µ ´
Figure 3.4: Navigation operations on a zipper for a binary tree

¶ ³
let remove = function

| PathL(p,t2), _ -> p, t2

| PathR(t1,p), _ -> p, t1

| _ -> failwith "cannot remove the root node"

(* int_tree -> it_zipper -> it_zipper *)

let replace_subtree tr = function

| p, _ -> p, trµ ´
Figure 3.5: Editing operations on a zipper for a binary tree
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Zipper approach can be applied for a list data structure as well as for a tree.

The zipper for a list is rather simple, in that the context for a sublist becomes a

list again.

¶ ³
type ’a list = [] | (::) of ’a * ’a list

type ’a list_sublist = ’a list

type ’a list_context = ’a list

type ’a list_zipper = ’a list_context * ’a list_sublist

(* moving operations *)

let lz_prev = fun (c::prevs, nexts) -> (prevs, c::nexts)

let lz_next = fun (prevs, c::nexts) -> (c::prevs, nexts)

(* editing operations *)

let lz_get_elem = fun (prevs, c::nexts) -> c

let lz_set_elem c = fun (prevs, _::nexts) -> (prevs, c::nexts)

let lz_remove_elem = fun (prevs, _::nexts) -> (prevs, nexts)

let lz_insert_after c = fun (prevs,nexts) -> (prevs, c::nexts)

let lz_insert_before c = fun (prevs,nexts) -> (c::prevs, nexts)

(* convert a list_zipper and a list *)

let lz_of_list = fun lst -> ([], lst)

let list_of_lz = fun (prevs, nexts)->List.rev_append prevs nextsµ ´
Figure 3.6: Operations on a zipper for a list

3.1.2 Zipper for a labeled variadic arity tree

Clearly the “focus” stated in the last subsection works as a cursor on tree or

a list structure. To use the focus as a cursor for an XML tree, we need a zipper

for the tree which can have arbitrary number of child trees and have a label (the

attributes and the name of the XML element) of a node. A code for the “subtree
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and its context” representation is shown in Figure 3.7. Now, the context has four

members - the context of the parent, the label of the parent, the list of preceding

siblings, and the list of following siblings.

¶ ³
type tree = Leaf of item

| Node of label * tree list

type tr_subtree = tree

type tr_context = NoPath

| Path of label

* tree list * tr_context * tree list

type tr_zipper = tr_context * tr_subtreeµ ´
Figure 3.7: Type of a zipper for a labeled variadic arity tree

¶ ³
(* type: tr_zipper -> tr_zipper *)

(* case of pattern match failure omitted *)

let prev = fun (* move the focus to the previous sibling *)

Path(label,l::ls,p,rs), t -> Path(label,ls,p,t::rs), l

let next = fun (* move the focus to the next sibling *)

Path(label,ls,p,r::rs), t -> Path(label,t::ls,p,rs), r

let down = fun (* down to the first child node *)

p, Node(label,c::cs) -> Path(label,[],p,cs), cµ ´
Figure 3.8: Navigation primitives of a zipper for a tree

Most operations of this zipper are straightforward, but a few have difficulty with

their implementation. The operation up is not a constant time operation anymore

(even if its amortized cost is constant). It takes linear time with respect to the

number of child nodes to reconstruct a node from left siblings, current tree, and

right siblings:
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¶ ³
(* List.rev_append takes linear time *)

let up = fun

Path(label,ls,p,rs), t ->

p, Node(label, List.rev_append (c::ls) rs)µ ´
Figure 3.9: up operation on a zipper for a tree

Another problem is that ‘remove the focused subtree’ operation fails to be an

intuitive operation. Figure 3.10 shows one possible implementation of this function.

After the removal we choose the next focus to move right, if possible, otherwise

left, and up in case of an empty children list.

This complicated rule is an consequence of the fact that the zipper have to focus

on some subtree. It cannot focus to an empty children list. This problem also

arises in the case of insert operation, which is the dual of remove. Since it is

impossible to go down to an empty children list by the zipper, similar complicated

rule takes place in the case of subtree insertion to a node which may or may not

have empty children.

¶ ³
let remove = function

| Path(label,t::ls,p,rs), _ -> Path(label,ls,p,rs), t

| Path(label,ls,p,t::rs), _ -> Path(label,ls,p,rs), t

| Path(label,[],p,[]), _ -> p, Node(label,[])µ ´
Figure 3.10: remove operation on a zipper for a tree

3.1.3 Conclusion

As we have seen, the zipper needs to be improved in several ways. The problems

of current zipper are summarized as follows:

• Treatment of an empty children list

• Non-constant time up operation
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In the next section, we will introduce a new data structure and show how to solve

these two problems.

3.2 The Slit data structure

3.2.1 Slit basics

The key concept of our “Slit” data structure is simple. We focus on the gap

between one subtree and another instead of focusing on a subtree itself. In other

word, we replace the zipper style representation of a tree:

left siblings ∗ current subtree ∗ right siblings ∗ parent

with another form:

left siblings ∗ right siblings ∗ parent

The relationship of these two style resembles that of overwrite mode and insert

mode in text editors. In the slit style, a cursor resides between two tree nodes as

if an insert-mode cursor of text editors exists between two characters, while the

zipper style cursor always selects one node as if a overwrite-mode cursor of text

editors selects one character. The name “Slit” is derived from its appearance while

digging into a tree.

Figure 3.11: Slit for a tree

Straightforward representation of this data type slit is like this:
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¶ ³
(* slit = root | left_siblings * right_siblings *)

type slit = NoPath

| Path of tree list * tree listµ ´
Figure 3.12: Type of slit for a labeled variadic arity tree (first try)

Carefully seeing, you may notice that this representation can be more simplified.

The tree list * tree list part turns out to be a zipper type for tree list.

This is not surprising since what that part indicates is the position in the child

node list. Additionally, the NoPath | Path of ... structure is representable by

the standard list structure. Applying these changes, the slit type now becomes

much shorter:¶ ³
type slit = (tree list_zipper) listµ ´

Figure 3.13: Type of slit for a labeled variadic arity tree (revised)

A value which belongs to this type acts as a cursor in a tree. Since this cursor is

a composition of list zipper and list data strucuture, the operations on the cursor

is represented as a composition of the operations on a list zipper and a list as well.

We see them in detail in the following subsections.

3.2.2 Cursor navigation operations

Moving a cursor to another gap between its sibling nodes boils down to the

operations to move a focus of the zipper for the sibling node list. More specifically,

“move the cursor to the next sibling gap in the tree” corresponds to “move the

cursor to the next element in the siblings list”. Thus, prev operation is just an

application of the lz prev operation to its current siblings list zipper. So is next

operation.

Operation for moving the cursor up to parent position and down to its child

position has to deal with the tree structure directly, but not so complicated.
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¶ ³
(* case of pattern match failure omitted *)

let prev = fun hd::tl -> (lz_prev hd)::tl

let next = fun hd::tl -> (lz_next hd)::tl

let down = fun hd::tl ->

match (lz_get_elem hd) with Node(_, children) ->

(lz_of_list children)::hd::tl

let up = fun hd::th::tl ->

match (lz_get_elem th) with Node(label, _) ->

(lz_set_elem (Node(label, list_of_lz hd)) th)::tlµ ´
Figure 3.14: Navigation operations for slit (1)

To emphasize that all these prev and next operations do is a forwarding to

lz prev and lz next, we can factor out this “application to current siblings list

zipper” as a single function. See Figure 3.15.

¶ ³
let apply_to_head lz_op = fun hd::tl -> (lz_op hd)::tl

let prev = apply_to_head lz_prev

let next = apply_to_head lz_nextµ ´
Figure 3.15: Navigation operations for slit (2)

The problem of empty child list is resolved by this representation. The case

moving the cursor down to the child position of a node with no children is naturally

treated in down function by setting both left and right siblings to empty list [],

At this point, the problem of non-constant up still remains. The modification

for this operation is discussed later.

3.2.3 Editing operations

Unlike zipper, the slit has no direct concept of “current element”. So we define

the “set or remove the current element” operations to affect on the next sibling
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element of the cursor.

There is no need to penetrate into the tree data structure for local editing oper-

ations required by the cursor model. So all of those are implemented in terms of

apply to head and list zipper operations.

¶ ³
let get_elem = fun hd::tl -> lz_get_elem hd

let set_elem e = apply_to_head (lz_set_elem e)

let insert_after e = apply_to_head (lz_insert_after e)

let insert_before e = apply_to_head (lz_insert_before e)

let remove_elem = apply_to_head (lz_remove_elem)µ ´
Figure 3.16: Editing operations for slit

3.2.4 Read only slit

Sometimes, only the reading capability is required for tree manipulation. For

such cases, the slit allows us to write a very efficient up operation with no extra

change to the datatype representation itself.

¶ ³
let ro_up = fun hd::tl -> tl (* List.tl *)µ ´

Figure 3.17: ‘up’ operation for read only slit

If no modification was done, moving up after down causes no effects. And as

shown in Figure 3.14, what the down operation does is to concatenate a new zipper

at the head of the context list. So all we have to do in up operation is to remove

the head and retain the tail of the context list.

3.2.5 Slit with dirty flags

Even in the case that perfectly read only framework is not acceptable, the op-

timization technique for read only case can be still partially applied. We add

so-called ‘dirty flags’ to the previous slit data structure.
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¶ ³
type slit_df = (tree list_zipper * bool) listµ ´

Figure 3.18: Type of slit with dirty flags

If this flag is true, it shows that somewhere in the current siblings list was

modified. The new up operation switches its behavior according to this flag. If it

is true, normal non-constant up operation is done. Otherwise, fast ro up operation

is able to be safely applied.

¶ ³
let up = fun (hd1,d1)::(hd2,d2)::tl ->

if d1 then

match (lz_get_elem hd2) with Node(label, _) ->

(lz_set_elem (Node(label, list_of_lz hd1)) hd2, true)::tl

else

(hd2,d2)::tlµ ´
Figure 3.19: ‘up’ of slit with dirty flags

Other operations than up is essentially same as the older version without dirty

flags, but it must keep the flag consistent. The strategy for the dirty flag manipula-

tion is simple. Cursor navigation operations do not change the flag, and modifying

operations set the flag on.
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¶ ³
let prev = function (hd,m)::tl -> fun (lz_prev hd, m)::tl

let next = function (hd,m)::tl -> fun (lz_next hd, m)::tl

let down = function (hd,m)::tl ->

match (lz_get_elem hd) with Node(_, children) ->

(lz_of_list children,false)::(hd,m)::tl

let get_elem =

function (hd,m)::tl -> lz_get_elem hd

let set_elem e =

function (hd,m)::tl -> (lz_set_elem e hd,true)::tl

let insert_after e =

function (hd,m)::tl -> (lz_insert_after e hd,true)::tl

let insert_before e =

function (hd,m)::tl -> (lz_insert_before e hd,true)::tl

let remove_elem =

function (hd,m)::tl -> (lz_remove_elem hd,true)::tlµ ´
Figure 3.20: Operations for slit with dirty flags

By introducing this dirty flag check, up becomes a constant time operation from

linear time one when it is possible. In many use cases like “find an element with

specified id and remove it”, most elements won’t be modified. As a result, most up

operation is done with the dirty flag off and is performed by the efficient version.

3.2.6 Conclusion

Here’s the summary of the features of slit with dirty flags compared to zipper:

• More simple representation achieved through the data structure which is a

composition of two simple structures

• Capability to deal with the node with empty child list intuitively.
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• When XML modifying operations are rare and cursor moving operations are

frequent, the up works efficiently.

19



Chapter 4

Implementation of XML Cursor Framework

4.1 Signature

We start with the definition of the general interface of XML cursor. The data

types dealt with this framework is shown in Figure 4.1. Note that there is no

recursive xData list term which represents child nodes. This is because the cursor

model should hide the underlying tree structure and treat them through cursor

moving operations. In this way, we can implement the cursor API not-only on

XML document but also on non-XML data structure.¶ ³
type xName = string

type xAttribute = xName * string

type xData = Data of string

| Node of xName * xAttribute listµ ´
Figure 4.1: Data types for cursor framework

Currently, our implementation does not support XML namespace. But it is easy

to extend this framework to support namespace by changing the type xName to

hold qualified name. The implementation does not include the comment node and

the processing instruction node in its data model.

Signature of operations we define in this framework are shown in Figure 4.2. It

consists of operations to move the cursor and to edit the indicated value, as stated
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in chapter 2.

¶ ³
module type CURSOR =

sig

(* the type used as an cursor *)

type cursor

(* move operations *)

val prev : cursor -> cursor

val next : cursor -> cursor

val up : cursor -> cursor

val down : cursor -> cursor

(* edit operations *)

val get : cursor -> xData

val set : xData -> cursor -> cursor

val insertA : xData -> cursor -> cursor

val insertB : xData -> cursor -> cursor

val remove : cursor -> cursor

endµ ´
Figure 4.2: Required operations to act as an cursor

Currently, all errors such as “could not go up” are reported by throwing excep-

tion.

4.2 Cursor for XML data

It is straightforward to implement the operations of CURSOR by using the slit in

chapter 3. The slit type shown in Figure 3.13 is used as the cursor type. Every

operation of CURSOR corresponds to the counterpart of the type slit.

In addition, we implemented two functions for input and output of XML file.
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The function input xml cursor loads an XML document from specified chan-

nel and returns a cursor placed at the root position of XML tree. The function

output xml cursor saves the tree indicated by the cursor to specified channel as

an XML document. The document tree from the root is saved whereever the cursor

is located. Current implementation uses Yaxpo library [15] as the parser of XML

texts.¶ ³
val input_xml_cursor : in_channel -> cursor

val output_xml_cursor : out_channel -> cursor -> unitµ ´
Figure 4.3: XML IO operations

4.3 Cursor for non-XML data

The concrete instance of cursor model is not limited to XML documents. If we

could define the operations listed in Figure 4.2 for some data structure appropri-

ately, we can manipulate the data structure through cursor API. Hereby a single

algorithm written in the cursor API becomes generic so that it can manipulate on

multiple kind of data structures.

In this section, we show two examples of the implementation of cursor model

operations for non-XML data structures.

4.3.1 Example 1: Cursor for a user defined data structure

Suppose a list of user defined record type which holds an address information of

a person. We can define a cursor on this addressbook data structure.

¶ ³
type person = { name : string; address : string; age : int; }
type addressbook = person listµ ´

Figure 4.4: Sample user defined data structure
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There are more than one possible way to define a cursor on this structure, but

the most natural one should be the one shown in Figure 4.5.

¶ ³
module CursorForAddressbookType

struct

type cursor_lv2 = person list_zipper

type cursor_lv3 = NameField | AddrField | AgeField | EndMark

type cursor = LV1 of bool (* left or right of root? *)

| LV2 of cursor_lv2

| LV3 of cursor_lv2 * cursor_lv3

| LV4 of cursor_lv2 * cursor_lv3 * bool

(* bool = left or right of the string? *)

endµ ´
Figure 4.5: Cursor for an user defined data structure

Cursor resides in the gap between two substructures as well as the representation

of slit for trees. It is straightforward to implement most operations required to be

a model of cursor API. But since we cannot insert a new field to a record typed

person in strongly typed language like OCaml, insertA and insertB operation for

LV3 cursor must raise an exception. Similar limitation applies to other operations,

too.

4.3.2 Example 2: Cursor for a table

Another example is to define a cursor on a abstract data type (ADT), namely a

cursor on a data type for which only the operations to be performed on the data are

specified, without concern for how the data and the operations are implemented.

Here is the sample ADT, 2-dimensional table:
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¶ ³
module Table :

sig

type t

val entry_num : t -> int

val field_num : t -> int

val field_name : int -> t -> string

val get : int -> int -> t -> string

val set : string -> int -> int -> t -> t

val insert : int -> t -> t

val remove : int -> t -> t

endµ ´
Figure 4.6: Table ADT

All manipulation of the table is done through two indices entry and field, and

actual implementation are hidden. Cursor on this ADT consists of the table itself

and the index where we focus on. Similar limitation as previous record example

also arises when we implement insertA operation and so on.

¶ ³
type cursor = LV1 of Table.t * bool

| LV2 of Table.t * int

| LV3 of Table.t * int * int

| LV4 of Table.t * int * int * boolµ ´
Figure 4.7: Cursor for a table
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Chapter 5

Example

An example application of our framework is shown in this chapter.

5.1 XML editor shell

We developed a command line XML editor which resembles XSH [16], using our

cursor API and its implementation. This editor is a shell-like application which

supports:

• The concept of “current working node”. User can navigate within an XML

document tree by changing the current node using the cursor operations up,

down, etc.

• Modification and display of the current node.

• Deletion and insertion of nodes.

• UNIX-shell-like listing command, ls and pwd.

All these manipulation commands are implemented through our cursor API. This

means that in fact, our XML-editor can also handle non-XML data structures with

cursor API. Example of such data structures are give in chapter 4.

This editor is incomplete at the present moment. Several useful features should

be added in the future. We are considering to imlement the commands listed below,

and it would not be so hard because of the nature of cursor model.
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• Filesystem-like navigation by cd command based on XPath notation.

• Cut-and-paste of XML nodes.

Sample usage of this editor shell is shown in Appendix A.

26



Chapter 6

Conclusion and Future Work

We have introduced a purely applicative data structure “Slit” which is an improve-

ment of the zipper data structure for a variadic arity labeled tree. The slit data

structure was suitable to represent a cursor on XML documents. By using the

slit, we have implemented an XML processing framework.Many extension of our

framework should be considered:

• DTD-aware or schema-aware XML manipulation. Current implementation

treats XML documents in completely un-typed manner, so the user cannot

guarantee the validness of generated result from this framework. It is useful

if every edit operation on XML tree automatically keeps the validness with

respect to specified schema. This extension may solve the problem that we

can not define a general implementation among XML and CSV, stated in

chapter 2. An XML tree can have an exact correspondence to table-like

structure under restriction by appropriate schemas.

• Multiple cursors on one data structures. Sometimes we want to place two

or more cursors in one data structures. This allows us to write a code

which copies, moves, or swaps elements in same XML document easily. Of

course, it is impossible to naively create two writable cursors which run on

one same document keeping the consistency with the principle of referential

transparency. But it may be possible to maintain a cursor pair (cursor *

cursor) for same document, by restricting all operations to affect always on

27



cursor pair.

• Cursor for data structures with sharing such as dags. Apart from XML, it is

an interesting question if we can define a cursor on dags or graphs efficiently.

Cursor based on a dag will have more than one up destination. In this style

of cursor API, we can implement a cursor view for 2-dimensional table with

overlapped hierarchy, i.e. a cursor which can go down in both column-row

order and row-column order.
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Appendix A

Example of XML Shell Usage

A.1 Input XML¶ ³
<Addressbook>

<Person><Name>Jane</Name>

<Address>Hongo1-2-3</Address>

<Birthday>1982/03/06</Birthday></Person>

<Person><Name>George</Name>

<Address>Kashiwa4-5-6</Address>

<Birthday>1999/12/31</Birthday></Person>

<Person><Name>Michael</Name>

<Address>Komaba7-8-9</Address>

<Birthday>1977/04/01</Birthday></Person>

<Person><Name>Susan</Name>

<Address>Asano0-1-2</Address>

<Birthday>1929/08/22</Birthday></Person>

<Person><Name>David</Name>

<Address>Sakasai3-4-5</Address>

<Birthday>1958/04/06</Birthday></Person>

</Addressbook>µ ´
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A.2 Execution Sample

This example demonstrates a manipulation of address book file. The same com-

mand sequence executes the same modification to both an XML address book and

a CSV address book.¶ ³
% editor test.xml

*** welcome to xml_mode ***

>>> pwd

/[Addressbook]

>>> down

>>> ls

[Name]

[Address]

[Birthday]

>>> down

>>> next

>>> down

>>> set Kashiwa4-5-8

>>> up

>>> up

>>> next

>>> next

>>> dig

/[Addressbook]/[Person]

[Name]

Michael

[Address]

Komaba7-8-9

[Birthday]

1977/04/01

>>> remove

>>> exitµ ´
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A.3 Output XML¶ ³
<Addressbook>

<Person><Name>Jane</Name>

<Address>Kashiwa4-5-8</Address>

<Birthday>1982/03/06</Birthday></Person>

<Person><Name>George</Name>

<Address>Kashiwa4-5-6</Address>

<Birthday>1999/12/31</Birthday></Person>

<Person><Name>Susan</Name>

<Address>Asano0-1-2</Address>

<Birthday>1929/08/22</Birthday></Person>

<Person><Name>David</Name>

<Address>Sakasai3-4-5</Address>

<Birthday>1958/04/06</Birthday></Person>

</Addressbook>µ ´
Reformatting was done by hand for ease of reading. Actual output does not

contain any line breaks and indentation spaces.

A.4 Input CSV¶ ³
Name,Address,Birthday

Jane,Hongo1-2-3,1982/03/06

George,Kashiwa4-5-6,1999/12/31

Michael,Komaba7-8-9,1977/04/01

Susan,Asano0-1-2,1929/08/22

David,Sakasai3-4-5,1958/04/06µ ´
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A.5 Output CSV¶ ³
Name,Address,Birthday

Jane,Kashiwa4-5-8,1982/03/06

George,Kashiwa4-5-6,1999/12/31

Susan,Asano0-1-2,1929/08/22

David,Sakasai3-4-5,1958/04/06µ ´
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