
Unsafe Order-2 Tree Languages are
Context-Sensitive1

Naoki Kobayashi1, Kazuhiro Inaba2, and Takeshi Tsukada3

1 The University of Tokyo
2 Google Inc.

3 University of Oxford and JSPS Postdoctoral Fellow for Research Abroad

Abstract. Higher-order grammars have been extensively studied in 1980’s
and interests in them have revived recently in the context of higher-order
model checking and program verification, where higher-order grammars
are used as models of higher-order functional programs. A lot of theoret-
ical questions remain open, however, for unsafe higher-order grammars
(grammars without the so-called safety condition). In this paper, we
show that any tree languages generated by order-2 unsafe grammars are
context-sensitive. This also implies that any unsafe order-3 word lan-
guages are context-sensitive. The proof involves novel technique based
on typed lambda-calculus, such as type-based grammar transformation.

1 Introduction

Higher-order (or high-level) grammars, where non-terminal symbols may take
higher-order functions as arguments, have been introduced in 1970’s [19, 20, 15]
and extensively studied in 1980’s [3]. They form a natural extension of Chom-
sky hierarchy [20], in the sense that they form an infinite language hierarchy,
where the order-0 and order-1 word languages are exactly regular languages and
context-free languages respectively. Recently, higher-order grammars have been
studied as models of higher-order programs [8, 16], and applied to automated
verification of higher-order programs [9, 13, 17].

Earlier theoretical results on higher-order grammars [3, 8, 6] have been for
those with the so-called safety restriction [8] (or, with the condition on derived
types [3]). Although some of the analogous results have recently been obtained for
unsafe grammars (those without the safety restriction) [16, 7, 14], many problems
still remain open, such as the context-sensitiveness of higher-order languages.
This is a pity, as many of the recent applications of higher-order grammars
make use of unsafe ones.

In the present paper, we are interested in the open problem mentioned above:
whether the languages generated by higher-order grammars are context-sensitive.

1 An earlier and shorter version of the paper has appeared in Proceedings of FoSSaCS
2014. We have corrected a few errors and restructured the proof since the earlier
version.

As a solution to a special case of the open problem, we show that the tree lan-
guages (or more precisely, the word languages obtained by preorder traversal of
trees, because the context-sensitiveness is usually the terminology for word lan-
guages) generated by any order-2 grammars are also context-sensitive. Since the
order-(n+ 1) word languages can be obtained as the leaf languages of trees gen-
erated by order-n grammars [11], the result also implies that the word languages
generated by order-3 grammars are context-sensitive.2

Our techniques to prove the context-sensitiveness of order-2 tree languages
are quite different from those used in Inaba and Maneth’s proof for context-
sensitiveness of safe languages [6]. Recall that the context-sensitiveness is equiv-
alent to the membership problem being NLIN-SPACE (non-deterministic linear
space). To show that, Inaba and Maneth decomposed higher-order (safe) trans-
ducers (whose image is the set of higher-order safe languages) into macro tree
transducers, and transformed the transducers so that the size of intermediate
trees increases monotonically. For the unsafe case, similar decomposition ap-
pears to be extremely difficult.

Instead of going through transducers or automata, we directly reason about
grammars with a help of techniques of typed λ-calculus (intersection types, in
particular). The high-level structure of our proof is actually similar to that of the
(straightforward) proof of the context-sensitivity of context-free languages. For a
context-free grammar (say, {S → aAA,A→ ε | aAb}), one can eliminate ε-rules
(A → ε in the above example) to ensure that the size of intermediate phrases
occurring in a production of a final word w is bounded by the size of w. For
example, the above grammar can be transformed to {S → aAA | a | aA,A →
aAb | ab}, by propagating information that A may be replaced by ε. The first
part of our proof shows that intersection types can be used to achieve a similar
(but more elaborate) transformation of higher-order grammars to exclude out
certain rewriting rules. More precisely, given a set C of functions, one can exclude
out rules that allow non-terminals to behave like one of the functions in C. The
second part of the proof shows that for the order-2 case, if we choose as C a
set of “permutator [2]-like” terms, then the size of intermediate terms occurring
in a production of a tree π is linearly bounded by the size of π. Thus, given
an order-2 grammar G, one can first transform G to an equivalent grammar G′
that satisfies the property above, and then the membership of a tree π in the
tree language of G′ can be decided in space linear in π. This implies that the
language of (word representation of) trees generated by G is context-sensitive.

From a practical viewpoint, the result may be applicable to the following
problem: given a program P and a possible execution trace (or an execution
tree) π, is π a real trace of P? If P is a simply-typed program with recursion
and finite base types, one can use the technique of [9] to construct a grammar
that represents all the possible traces of P . One can then use the above algorithm
to decide the membership problem in linear space with respect to the size of π. If

2 The order-2 word languages are known to be context-sensitive. The result follows
from context-sensitiveness of safe word languages [6] and the equivalence of safe and
unsafe word languages for the order-2 case [1].

2

one asks many questions for a fixed P and different π, using the above algorithm
is theoretically more efficient than using higher-order model checking [9].

The rest of the paper is structured as follows. Section 2 defines higher-order
grammars and the languages generated by grammars. Section 3 describes the
type-based grammar transformation that removes certain rewriting rules. Sec-
tion 4 focuses on order-2 grammars and shows that after the grammar trans-
formation, the size of intermediate terms is linearly bounded by the size of the
produced tree. Section 5 discusses related work and Section 6 concludes.

2 Preliminaries

This section defines higher-order grammars and the languages generated by
them. When f is a map, we write dom(f) and codom(f) for the domain and
codomain of f .

Definition 1 (types). The set of simple types, ranged over by κ, is defined
by: κ ::= o | κ1 → κ2. The order and arity of a simple type κ, written order(κ)
and ar(κ), are defined by:

order(o) = 0 order(κ1 → κ2) = max(order(κ1) + 1, order(κ2))
ar(o) = 0 ar(κ1 → κ2) = 1 + ar(κ2)

Intuitively, o is the type of trees. We assume a ranked alphabet Σ, which is a
map from a finite set of symbols (called terminals) to their arities. We use each
terminal a as a tree constructor of arity Σ(a). We assume a finite set of symbols
called non-terminals, ranged over by A.

Definition 2 (λ-terms). The set of λ-terms, ranged over by t, is defined by:
t ::= x | A | a | t1 t2 | λx :κ.t. A term t is called an applicative term (or simply
a term) if it does not contain λ-abstractions.

We often omit the type annotation and just write λx.t for λx : κ.t. We consider
only well-typed terms; the type judgment relation K `ST t : κ (where non-
terminals are treated as variables) is defined inductively by:

K ∪ {x : κ} `ST x : κ
K `ST a : o→ · · · → o︸ ︷︷ ︸

Σ(a)

→ o

K `ST t1 : κ2 → κ K `ST t2 : κ2

K `ST t1 t2 : κ

K ∪ {x : κ1} `ST t : κ2

K `ST λx : κ1.t : κ1 → κ2
We call t a (finite, Σ-ranked) tree if t consists of only terminals and appli-

cations, and ∅ `ST t : o holds. We write TreeΣ for the set of Σ-ranked trees, and
use the meta-variable π for a tree.

Definition 3 (higher-order grammar). A higher-order grammar (called
simply a grammar) is a quadruple (Σ,N ,R, S), where (i) Σ is a ranked alpha-
bet; (ii) N is a map from a finite set of non-terminals to their types; (iii) R is

3

a finite set of rewriting rules of the form Ax1 · · · x` → t, where A ∈ dom(N)
and t is an applicative term. We require that N (A) must be of the form κ1 →
· · · → κ` → o and N , x1 : κ1, . . . , x` : κ` `ST t : o must hold. (iv) S is a non-
terminal called the start symbol, and N (S) = o. The order (arity, resp.) of
a grammar G, written order(G) (ar(G), resp.), is the largest order (arity, resp.)
of the types of non-terminals. We sometimes write ΣG ,NG ,RG , SG for the four
components of G.

For a grammar G = (Σ,N ,R, S), the rewriting relation −→G is defined by:

Ax1 · · · xk→ t ∈ R
A t1 · · · tk −→G [t1/x1, . . . , tk/xk]t

ti −→G t′i i ∈ {1, . . . , k} Σ(a) = k

a t1 · · · tk −→G a t1 · · · ti−1 t′i ti+1 · · · tk
Here, [t1/x1, . . . , tk/xk]t is the term obtained by substituting ti for the free oc-
currences of xi in t. We write −→∗G for the reflexive transitive closure of −→G.

The tree language generated by G, written L(G), is the set {π ∈ TreeΣG |
S −→∗G π}. When the arity of every symbol in Σ is at most 1, the word lan-
guage generated by G is {a1 · · · an | a1(· · · (an e) · · ·) ∈ L(G)}. The leaf lan-
guage generated by G, written Lleaf(G), is the set: {leaves(π) | S −→∗G π ∈
TreeΣG}, where leaves(π) is the sequence of symbols in the leaves of π, defined
inductively by: leaves(a) = a, and leaves(a π1 π2) = leaves(π1)leaves(π2). The
order of a tree language is the smallest order of a grammar that generates
the language.

A grammar is safe if for the type κ1 → · · · → · · · → κ` → o of each term t,
(i) order(κ1) ≥ · · · ≥ order(κ`) holds, and (ii) if order(κi) = order(κi+1), the
i-th and (i+ 1)-th arguments of t are passed always together. Grammars without
the safety restriction are sometimes called unsafe, to emphasize the fact that
there is no safety restriction. (Thus, the set of unsafe grammars include safe
grammars.) A language is called safe if it is generated by some safe grammar.

In the rest of this paper, we assume that every terminal has arity 0 or 2. This
does not lose generality, because every tree can be represented by a corresponding
binary tree with linear size increase.

Example 1. Consider the order-2 grammar G0 = ({a : 2, b : 2, e : 0}, {S :o, F : (o→
o) → o → o, C : (o → o → o) → (o → o → o) → o → o, T : (o → o) → o →
o},R, S) where R consists of the rules:

S → F (C a b) e F hx→ hx, F hx→ F (T h)x
C h1 h2 x→ h1 xx C h1 h2 x→ h2 xx T hx→ h(hx).

Then, the following is a possible reduction sequence:

S −→ F (C a b) e −→ F (T (C a b)) e −→ T (C a b) e
−→ (C a b) (C a b e) −→ a (C a b e) (C a b e) −→∗ a (b e e) (a e e).

L(G0) is the set of perfect finite trees of height 2n (where all the leaves have the

same depth). Lleaf(G0) = {e22
n

| n ≥ 0}.

4

Example 2. Consider the grammar G1 = ({f :2, g :2, a :0, b :0, e :0}, {S :o, F :(o→
o)→ o→ o→ o, G : o→ o, H : o→ o},R, S) where R consists of:

S → F G a b F ϕx y → f(F (F ϕx) y (H y))(f (ϕy)x) F ϕx y → e

Gx→ gx e H x→ g ex.

This has been obtained from the grammar conjectured to be inherently unsafe
([8], p.213), by adding the rule F ϕx y → e (so that the grammar generates a set
of finite trees, instead of an infinite tree) and encoding unary tree constructors
g and h in their grammar as G and H (so that h(π) and g(π) are represented by
g eπ′ and gπ′ e respectively). The following is a possible reduction sequence:

S −→ F G a b −→ f(F (F G a) b (H b))(f (G b) a) −→ f e (f (G b) a)
−→ f e (f (g b e) a).

3 Type-Based Grammar Transformation

As mentioned in Section 1, a key idea of our proof is to first transform a grammar
to an equivalent grammar, so that the size of intermediate terms in a production
sequence of tree π is linearly bound by the size of π. Note that the size of
intermediate terms is not bounded for arbitrary grammars. For example, for
the rewriting rules {S → F e, F x → e, F x → F (F x)}, an arbitrarily large
intermediate term Fn e may occur in a production of e. As another example,
replace the rule F x → e above with F x → x. Again, an arbitrarily large
intermediate term Fn e may occur in a production of e.

The problems above are attributed to the rules F x→ e and F x→ x, which
respectively allow F to ignore arguments and to behave like an identity function.
This section formalizes a type-based transformation that can remove such “non-
productive” behaviors of non-terminals. A complication arises because (i) the
grammars must actually be extended to enable such transformation, and (ii) the
kinds of non-productive behaviors that should be removed depends on the order
of grammars (more need to be eliminated with the increase of the order) and
we have not yet obtained a general characterization of non-productive behaviors.
We thus first present extended grammars in Section 3.1, and formalize the trans-
formation by parametrizing it with a set of prohibited behaviors in Section 3.2.
In the next section, we provide a sufficient characterization of prohibited behav-
iors for the order-2 case, and show that the removal of those behaviors indeed
guarantee that the size of intermediate terms is linearly bounded by a generated
tree.

3.1 Extended Grammars

This section introduces extended grammars, which are used as the target of the
transformation.

5

Definition 4 (extended terms). The set of extended terms, ranged over by
e, is defined by:

e ::= a | x | A | eE | 〈f〉E E ::= {e1, . . . , ek} f ::= e | λx : κ.f

Here, A ranges over non-terminals, and k > 0 in {e1, . . . , ek}. We require that
f in 〈f〉 contains no non-terminals, terminals, nor free variables.

Intuitively, e {e1, . . . , ek} applies the function e to the argument {e1, . . . , ek},
which non-deterministically evaluate to ei for some i; however, e must use each
e1, . . . , ek at least once. Thus, if we have a rule Ax→ axx, then A {e1, e2} may
be reduced to a e1 e2 or a e2 e1 but not to a e1 e1. We often write e e1 for e {e1}.
The term 〈f〉 is semantically the same as the (extended) λ-term f . Note that
〈f〉 cannot occur in an argument position; for example, A 〈λx.x〉 is disallowed.
(To save the number of rules, however, we allow e to be instantiated to 〈f〉 in
the definitions of the type judgment and substitutions below.) We later restrict
the set of terms f that may occur in the form of 〈f〉.

The type judgment relation K `E e : κ is defined inductively by:

{x : κ} `E x : κ {A : κ} `E A : κ ∅ `E a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o

{x1 : κ1, . . . , xk : κk} `E e : o

`E 〈λx1 : κ1. · · ·λxk : κk.e〉 : κ1 → · · · → κk → o

K1 `E e1 : κ2 → κ K2 `E E2 : κ2

K1 ∪ K2 `E e1E2 : κ

Ki `E ei : κ for each i ∈ I⋃
i∈I Ki `E {ei | i ∈ I} : κ

Please notice that weakening is not allowed in the above rules. Therefore, if
K `E e : κ, then every variable in K must occur at least once in e. We write e↓
(f↓, resp.) if e (f , resp.)does not contain any subterms of the form:

1. 〈λx1. · · ·λxk.e〉E1 · · · Ek (where e has type o)
2. 〈f1〉(〈f2〉E).

Definition 5 (extended grammars). A combinator is an extended λ-term
f such that ∅ `E f : κ for some κ. Let C be a set of combinators. An extended
grammar over C is a quadruple (Σ,N ,R, S), where: (i) Σ is a ranked alphabet;
(ii) N is a map from a finite set of non-terminals to their types; (iii) R is a
finite set of extended rewriting rules of the form Ax1 · · · x` → e, where
A ∈ dom(N), and f ∈ C for every 〈f〉 in e. We require that N (A) must be
of the form κ1 → · · · → κ` → o and Γ ∪ {x1 : κ1, . . . , x` : κ`} `E e : o must
hold for some Γ ⊆ N . Furthermore, λx1. · · ·λx`.e 6∈ C, and e↓. (iv) S is a non-
terminal called the start symbol, and N (S) = o. As before, the order and arity
of G, written order(G) and ar(G), are the largest order and arity of the types of
non-terminals.

6

To define the rewriting relation for extended grammars, we need to extend
the ordinary notion of substitutions. An (extended) substitution is a map from
variables to sets of terms. We write [E1/x1, . . . , Ek/xk] for the substitution that
maps xi to Ei, and use the meta-variable θ. The operation [E/x]e replaces each
occurrence of x in e with an element of E in a non-deterministic manner. Thus,
we define the substitution operation as a relation θ |= e e′, which means
that e′ is the term obtained by applying the substitution θ to e. The relations
θ |= e e′ and θ |= E E′ are defined inductively by:

[] |= a a
(S-T)

[] |= A A
(S-NT)

[] |= 〈f〉 〈f〉
(S-C)

[{e}/x] |= x e
(S-Var)

θ1 |= e1 e′1 θ2 |= E2 E′2
θ1 ∪ θ2 |= e1E2 e′1E

′
2

(S-App)

θi,j |= ei ei,j for each i ∈ I, j ∈ Ji⋃
i∈I,j∈Ji θi,j |= {ei | i ∈ I} {ei,j | i ∈ I, j ∈ Ji}

(S-TSet)

Here, the operation θ1 ∪ θ2 on substitutions is defined by:

dom(θ1 ∪ θ2) = dom(θ1) ∪ dom(θ2)

(θ1 ∪ θ2)(x) =

θ1(x) ∪ θ2(x) if x ∈ dom(θ1) ∩ dom(θ2)
θ1(x) if x ∈ dom(θ1) \ dom(θ2)
θ2(x) if x ∈ dom(θ2) \ dom(θ1)

Example 3. Let θ = [{b, c}/x] and e = axx. Then θ |= e a b c and θ |= e
a c b hold, but neither θ |= e a b b nor θ |= e a c c does.

For G = (Σ,N ,R, S), the rewriting relation −→G on terms is defined by:
Ax1 · · · xk → e ∈ R

[E1/x1, . . . , Ek/xk] |= e e′

AE1 · · · Ek −→G e′
(ER-NT)

[E1/x1, . . . , Ek/xk] |= e e′

〈λx1 · · ·xk.e〉E1 · · · Ek −→G e′
(ER-Comb)

ei −→G e′i i ∈ {1, . . . , Σ(a)}
a {e1} · · · {eΣ(a)} −→G a {e1} · · · {ei−1} {e′i} {ei+1} · · · {eΣ(a)}

(ER-Cong)

We often omit the subscript G. The tree language generated by an ex-
tended grammar G, written L(G), is the set {π ∈ TreeΣG | S −→∗G π} (where
we identify a singleton set {e} with e; for example, the extended term a {e} {e}
is interpreted as the tree a e e).

7

Example 4. Consider the extended grammar G2 = ({a :2, b :0, c :0}, {S :o, F :o→
o},R, S) where R = {S → F {b, c}, F x→ a{F {x}}{F {x}}, F x→ x}, then:

S −→ F{b, c} −→ a(F{b}) (F{b, c}) −→∗ a b (a (F{c}) (F{b})) −→∗ a b (a c b).

L(G2) is the set of all (well-typed)binary trees that contain at least one b and
one c.

Reduction with Eager Normalization. We define e −→λ e
′ inductively by:

[E1/x1, . . . , Ek/xk] |= e e′

〈λx1 · · ·xk.e〉E1 · · · Ek −→λ e
′ (RLam-Comb)

[{〈f2〉x}/x] |= f1 e e −→∗λ e′↓
〈λx.λỹ.f1〉(〈f2〉E) −→λ 〈λx.λỹ.e′〉E

(RLam-Comp)

e −→λ e
′

e0 (E ∪ {e}) −→λ e0 (E ∪ {e′})
(RLam-App1)

e0 −→λ e
′
0

e0E −→λ e
′
0E

(RLam-App2)

In the rules above, the restriction is imposed that every argument of a terminal
symbol must be a singleton set; thus, the reduction like (λx.x {e1, e2})a −→λ

a {e1, e2} is not allowed. We write e ↓λ e′ if e −→∗λ e′↓.
Henceforth, we assume that every element of C is fully normalized with re-

spect to −→λ, i.e., f↓ for every f ∈ C. We also assume that the set C is closed
under composition, in the sense that if λx.λỹ.e1, f2 ∈ C (where e1 has ground
type o) and [{〈f2〉x}/x] |= f1 e with e ↓λ e′, then λx.λỹ.e′ ∈ C. We write
e =⇒G e′ if e(↓λ· −→G ·↓λ)e′.

A Variation of Substitutions and Reductions We consider the linear version of
extended grammars.

p (linear extended terms) ::= a | x(i) | Ag | pP | 〈g〉P
P ::= (p1, . . . , pk) g ::= p | λ(x(1), . . . , x(k)) : γ1 × · · · γk.g
γ (linear types) ::= o | γ × · · · × γ → γ

Here, k > 0. We often write x for (x(1), . . . , x(k)), and ×γ for γ1×· · ·×γk. Note
that each non-terminal A is now annotated with a (linear extended) λ-term g.
It expresses how the non-terminal will be expanded by the rewriting rules. We
sometimes omit the annotation when it is not important. As is the case for
(non-linear) extended terms, We require that g in 〈g〉 contains no non-terminals,
terminals, nor free variables.

8

The partial operation · defined as follows maps linear types to simple types.

o = o

γ1 × · · · × γk = γ1 if γ1 = · · · = γk
×γ → γ = ×γ → γ

Henceforth we consider only types γ such that γ is defined. The extended term
p, obtained by collapsing variables and tuples, is defined by:

a = a x(i) = x Ag = A pP = pP

〈g〉E = 〈g〉E
(p1, . . . , pk) = {p1, . . . , pk}
λ(x(1), . . . , x(k)) : γ1 × · · · × γk.g = λx : γ1 × · · · × γk.g

The type judgment relation ∆ ` p : γ for linear extended terms is given by:

{x : γ} ` x : γ ∅ `E a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o
∅ ` g : γ

∅ ` 〈g〉 : γ

Ax1 · · · xk → p ∈ R ∅ ` λx1. · · ·λxk.p : γ γ = N (A)

∅ ` Aλx1.···λxk.p : γ

∆] {x(1) : γ1, . . . , x
(k) : γk} ` g : γ

∆ ` λ(x(1), . . . , x(k)) : γ1 × · · · × γk.g : γ1 × · · · × γk → γ

∆i ` pi : γi for each i ∈ {1, . . . , k}
∆1] · · ·]∆k ` (p1, . . . , pk) : γ1 × · · · × γk

∆0 ` p : γ1 × · · · × γk → γ ∆1 ` P : γ1 × · · · × γk
∆0]∆1 ` pP : γ

Here, ∆0]∆1 is defined to be ∆0 ∪∆1 only if dom(∆0) ∩ dom(∆1) = ∅. Note
that the rules above require that every variable occurs just once.

We also define the linear version of reductions:−→λ,lin,−→G,lin, and =⇒G,lin.
The relation −→λ,lin is defined by:

〈λx1 · · ·xk.p〉P1 · · · Pk −→λ,lin [P1/x1, . . . , Pk/xk]p
(RLamL-Comb)

Note that, thanks to the linearity, the substitution is now deterministic.

[(〈f2,1〉z1, . . . , 〈f2,k〉zk)/x]f1 −→∗λ,lin p′

p′ ↓ (〈f2,1〉P1, . . . , 〈f2,k〉Pk) = {〈f〉E}
〈λx.λỹ.f1〉(〈f2,1〉P1, . . . , 〈f2,k〉Pk) −→λ,lin 〈λ(z1 + · · ·+ zk).λỹ.p′〉(P1 + · · ·+ Pk)

(RLamL-Comp)

9

Here, we write + for the concatenation operator on tuples.

pi −→λ,lin p
′
i

p0 (p1, . . . , pi, . . . , pk) −→λ,lin p0 (p1, . . . , p
′
i, . . . , pk)

(RLamL-App1)

p0 −→λ,lin p
′
0

p0 P −→λ,lin p
′
0 P

(RLamL-App2)

We write p ↓λ,lin p′ if p −→∗λ,lin p′ and p′↓.
The reduction rules are modified accordingly:

Aλx1.···λxk.p P1 · · · Pk −→G,lin [P1/x1, . . . , Pk/xk]p
(ERL-NT)

pi −→G,lin p′i i ∈ {1, . . . , Σ(a)}
a (p1) · · · (pΣ(a)) −→G,lin a (p1) · · · (p′i) · · · (pΣ(a))

(ERL-Cong)

In the rule ERL-NT, P/x abbreviates p1/x
(1), . . . , pk/x

(k), and the reduction
is allowed only when types are preserved. We write =⇒G,lin for ↓λ,lin· −→G,lin
·↓λ,lin.

We write L=⇒(G) and L=⇒lin
(G) for {π | S =⇒∗G π} and {π | S =⇒∗G,lin π}

respectively. We also write L=⇒lin,2
(G) for the restriction of L=⇒lin

(G) such that
for each reduction step p =⇒′p,lin (i.e., p −→G,lin p0 −→λ,lin Gp1 −→λ,lin

G · · · −→λ,lin Gpn = p′), it is required that each intermediate term does not
contain any three consecutive application of combinators (i.e., a subterm of the
form 〈g1〉(〈g2〉(〈g3〉p′′))).

The following properties follow immeidately from the definitions.

Lemma 1. If e −→G,lin e′, then e −→G e′. If e −→λ,lin e
′, then e −→λ e′.

3.2 From Grammars to Extended Grammars

This section presents a translation from (ordinary) grammars to extended gram-
mars over a set C of combinators, and shows that the translation preserves the
tree language. Here, we assume that for each simple type κ, the set Cκ = {f ∈
C | ∅ ` 〈f〉 : κ} is finite, i.e., there are only finitely many elements of C that
have type κ. We use type-based transformation techniques to eliminate useless
arguments and (non-applied) combinators in C.

Definition 6 (intersection types). The set of intersection types over C,
ranged over by τ , is given by:

τ ::= o | (σ1 → · · · → σk → o, η) σ ::=
∧
{τ1, . . . , τ`} η (flag) ::= nc | 〈f〉

Here, f ranges over C. We define flag(τ) by flag(o) = nc and flag(σ1 → · · · →
σk → o, η) = η.

10

We often write τ1 ∧ · · · ∧ τk and > for
∧
{τ1, . . . , τk} and

∧
∅ respectively. We

assume a certain total order < on the intersection types. Intuitively, the type
o describes trees. The type

∧
{τ1, . . . , τ`} describes terms that behave like a

value of type τi for every i ∈ {1, . . . , `}. The type (σ1 → · · · → σk → o, η)
describes functions that take arguments of types σ1, . . . , σk and return a tree
of type o. The flag η describes how the term behaves after the transformation
for removing unused arguments. If η = 〈f〉, then the term behaves like f after
the transformation, and if η = nc, the term does not behave like any of the
combinators in C. For example, the term λx.λy.y has type (> → o→ o, 〈λy.y〉),
because after removing the redundant argument x, the term behaves like the
identity function λy.y.

We consider only types that respect underlying sorts. The operation [[·]] given
below maps an intersection type to the simple type obtained by the grammar
transformation.

[[(σ̃ → o, η)]] = [[σ̃ → o]] [[o]] = o

[[
∧
{τ1, . . . , τ`, τ ′1, . . . , τ ′`′} → σ̃ → o]] = [[τ1]]→ · · · → [[τ`]]→ [[σ̃ → o]]

if flag(τ ′j) 6= nc and flag(τj) = nc and j < j′ implies τj < τj′

Here, σ̃ → o is an abbreviation of σ1 → · · · → σk → o. The type τ is called a
refinement of κ, if τ :: κ is derivable by the following rules.

o :: o
σi :: κi for each i ∈ {1, . . . , k} ∅ ` 〈f〉 : [[(σ̃ → o, f)]]

(σ̃ → o, 〈f〉) :: κ̃→ o

τi :: κ for each i ∈ {1, . . . , k}∧
{τ1, . . . , τk} :: κ

σi :: κi for each i ∈ {1, . . . , k}
(σ̃ → o,nc) :: (κ̃→ o)

Henceforth we consider only intersection types that are refinement of some simple
types. For example, intersection types like (

∧
{o, (o → o,nc)} → o,nc) and

(o→ o, 〈λf.λx.f(x)〉) are excluded out.

Lemma 2. Supose that Cκ is finite for every κ. Then, the set ITypesκ = {τ |
τ :: κ} is finite for every κ.

Proof. This follows by straightforward induction on the structure of κ. �

Transformation rules. We define the term transformation relation Γ ` t : τ ⇒
e, where: (i) Γ is an (intersection) type environment, i.e., a set of type bindings
of the form {x1 : τ1, . . . , xk : τk}, where each variable may occur more than once
(we often omit curly brackets and just write x1 : τ1, . . . , xk : τk); (ii) t is a term;
(iii) τ is the type of t; and (iv) e is an extended term. When σ =

∧
{τ1, . . . , τk},

we sometimes write x : σ for x : τ1, . . . , x : τk. Intuitively, Γ ` t : τ ⇒ e means
that the term t corresponds to e, when t behaves as specified by τ . For example,
if Γ = {g : (o → o, 〈λx.x〉)}, then Γ ` g e : τ ⇒ 〈λx.x〉e should hold, since Γ
says that g will be transformed to a term that behaves like λx.x.

The transformation relation is inductively defined by the following rules:
flag(τ) = 〈f〉

x : τ ` x : τ ⇒ 〈f〉
(X-VarC)

flag(τ) = nc

x : τ ` x : τ ⇒ xτ
(X-Var)

11

∅ ` a : (o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o,nc)⇒ a
(X-T) flag(τ) = nc

∅ ` A : τ ⇒ Aτ
(X-NT)

Ax1 · · · xk → t ∈ R x1 : σ1, . . . , xk : σk ` t : o⇒ e e ↓λ e′
f = λVars({x1 : σ1, . . . , xk : σk}, x1 · · ·xk).e′ ∈ C τ = (σ1 → · · · → σk → o, 〈f〉)

∅ ` A : τ ⇒ 〈f〉
(X-NTC)

Γ0 ` t0 : (
∧
{τ1, . . . , τ`} → ρ, η)⇒ e0 η′ =

{
η if k = 0
nc if k > 0

Γi ` t1 : τi ⇒ Ei flag(τi) = nc for i ∈ {1, . . . , k} τi < τj if i < j ≤ k
Γi ` t1 : τi ⇒ e1,i flag(τi) 6= nc for i ∈ {k + 1, . . . , `}

Γ0 ∪
⋃
i∈{1,...,`} Γi ` t0t1 : (ρ, η′)⇒ e0E1 · · · Ek

(X-App)

Γi ` t : τ ⇒ ei for each i ∈ {1, . . . , k} k ≥ 1

Γ1 ∪ · · · ∪ Γk ` t : τ ⇒ {e1, . . . , ek}
(X-Set)

In the rule X-NTC above, Vars(Γ, x̃) (where x̃ is a possibly empty sequence of
variables) is a sequence of type bindings defined by (recall that < is the total
order on intersection types):

Vars(Γ, ε) = ε Vars(Γ, xỹ) = (xτ1 : [[τ1]]) · · · (xτk : [[τk]])Vars(Γ, ỹ)
where {τ1, . . . , τk} = {τ | x : τ ∈ Γ,flag(τ) = nc} and τ1 < · · · < τk.

Here is some explanation of the transformation rules. The rule X-VarC
ensures that if x behaves like f , then x is replaced with 〈f〉; this allows us to
propagate information about elements of C during the transformation, and avoid
passing them around as function arguments. The rule X-Var says that if x does
not behave like an element of C, then the variable is replicated for each type τ .
(Here, we assume that xτ and x′τ ′ are different variables if x 6= x′ or τ 6= τ ′.)
Similarly, there are two rules for non-terminals, depending on whether the body
of a rule behaves like an element of C. The rule X-App is for applications.
We ensure that only terms with nc flags remain as arguments, so that terms
behaving like elements of C are not passed around. Each argument is now a set
of terms; this is because the output of transformation may not be unique. For
example, if F has both types (o → > → o,nc) and (> → o → o,nc) (which
means that F may use either the first or second argument), then F b c in an
argument position would be replaced by {F(o→>→o,nc) b, F(>→o→o,nc) c}.

For a grammar G = (Σ,N ,R, S) and an extended one G′ = (Σ,N ′,R′, So),
we write ` G ⇒ G′ if (i) N ′ = {Fτ 7→ [[τ]] | τ ::N (F)} and (ii) R′ is the set:

{F(σ1→···→σk→o,nc) y1 · · · ym → e′ |
(F x1 · · · xk → t) ∈ R ∧ x1 : σ1, . . . , xk : σk ` t : o⇒ e
∧Vars({x1 : σ1, . . . , xk : σk}, x1 · · ·xk) = (y1 : κ1) · · · (ym : κm)
∧e ↓λ e′ ∧ (σ1 → · · · → σk → o,nc) ::N (F) ∧ λy1 : κ1. · · ·λym : κm.e

′ 6∈ C}.

12

So far we have implicitly assumed the set C is fixed when we write Γ ` t : τ ⇒ e
and ` G ⇒ G′. We write Γ `C t : τ ⇒ e and `C G ⇒ G′ if we wish to make the
set C explicit.

Example 5. Recall G0 in Example 1. Let C = {λh.λx.h x, λh.λx.h x x}. By apply-
ing the transformation and removing redundant rules, we obtain the grammar
G′0 = (Σ,N ′,R′, So), where f = λh.λx.h x x and τ = ((o→ o,nc)→ o→ o,nc)
with:

N ′ = {So : o, Fτ : (o→ o)→ o→ o, Tτ : (o→ o)→ o→ o}
R′ = {So → a e e, So → b e e, So → Fτ {〈f〉 a} e,

So → Fτ {〈f〉 b} e, So → Fτ {〈f〉 a, 〈f〉 b} e,
Fτ hx→ Tτ hx, Fτ hx→ Fτ (Tτ h)x, Tτ hx→ h(hx)}.

The tree a (b e e) (a e e) is obtained as follows. (We omit the subscripts of non-
terminals, as they happen to be the same for each original non-terminal.)

S −→ F {〈f〉 a, 〈f〉 b} e −→ T {〈f〉 a, 〈f〉 b} e −→ 〈f〉 a{〈f〉 a e, 〈f〉 b e}
−→ a (〈f〉 b e) (〈f〉 a e) −→∗ a (b e e) (a e e).

The linear version of the production sequence is:

Sg0 −→ F g1 (〈g〉 a, 〈g〉 b, 〈g〉 a) (e, e, e, e) −→ T g2 (〈g〉 a, 〈g〉 b, 〈g〉 a) (e, e, e, e)
−→ 〈g〉 a(〈g〉 b (e, e), 〈g〉 a (e, e))
−→ a (〈g〉 b (e, e)) (〈g〉 a (e, e)) −→∗ a (b e e) (a e e).

Here, g, g0, g1, g2 are:

g = λh.λ(x(1), x(2)).h x(1) x(2)

g0 = F g1 (〈g〉 a, 〈g〉 b, 〈g〉 a) (e, e, e, e)
g1 = λ(h(1), h(2), h(3)).λ(x(1), x(2), x(3), x(4)).T g2(h(1), h(2), h(3)) (x(1), x(2), x(3), x(4))
g2 = λ(h(1), h(2), h(3)).λ(x(1), x(2), x(3), x(4)).h(1)(h(2)(x(1), x(2)), h(3)(x(3), x(4))).

The following theorem states that the transformation preserves the language.

Theorem 1. If G is an order-n grammar and ` G ⇒ G′, then G′ is a valid
order-n extended grammar and L(G) = L=⇒G′ = L=⇒lin

(G′) = L=⇒lin,2(G′).

Proof. L=⇒G′ ⊇ L=⇒lin
(G′) follows from Lemma 1 and L=⇒lin

(G′) ⊇ L=⇒lin,2(G′)
follows from the definition. The other inclusions are shown in Appendix B. �

4 Bounding the Size of Intermediate Terms

In this section, we restrict the order of grammars to 2, and let C be the following
set:

{λx : o.x}∪
{λy1 · · · yk.yiE1 · · · E` | E1 ∪ · · · ∪ E` = {y1, . . . , yk} \ {yi}}.

Then Cκ is finite for each κ. We shall show that for an extended order-2 grammar
over C, if π ∈ L(G), then there exists a production sequence of π where the size

13

of intermediate terms is linearly bounded by the size of π. The size |e| of an
extended term e is defined by:

|a| = |x| = |A| = 1
|e {e1, . . . , ek}| = |e|+ |e1|+ · · ·+ |ek| |〈f〉 {e1, . . . , ek}| = 1 + |e1|+ · · ·+ |ek|.

Here, e1, . . . , ek are different from each other for the set-version of extended
terms. The size |(|p) of a linear extended term is defined similarly:

|a| = |x| = |A| = 1
pP	=	p	+	P
〈g〉P	= 1 +	P		
(p1, . . . , pk)	=	p1	+ · · ·+	pk

Note that in both cases, the size of 〈f〉 or 〈g〉 is counted as 1, irrespectively how
large f or g is. For extended terms, this is justified by the fact that given a fixed
grammar, the number of combinators is fixed. The size of a linear extended term
is used just for evaluating that of the corresponding extended term; so it does
not need to reflect the memory size required for representing the linear extended
term.

The size |π| of a tree π is the size of π as an extended term, which is the
same as the number of nodes and leaves of π. The property mentioned above is
stated more formally as follows.

Theorem 2. Let G = (Σ,N ,R, S) be an order-2 tree grammar, and `C G ⇒ G′.
If π ∈ L(G), then there exists an (effectively computable) constant c such that
for every tree π ∈ L(G), there exists a reduction sequence S = e0 =⇒G′ e1 =⇒G′

· · · =⇒G′ en = π such that for every intermediate term e (including not only ei
but also those occurring in ei =⇒G′ ei+1), |e| ≤ c|π| holds.

As a corollary, the following main result of this paper is obtained.

Corollary 1. Fix an order-2 grammar G. The membership problem π
?
∈ L(G)

can be decided in a non-deterministic Turing machine in O(|π|) space.

Proof. By Theorem 1, we can effectively construct an order-2 extended gram-
mar G′ over C such that `C G ⇒ G′. Compute the constant c of Theorem 2.
Since G is fixed, those steps can be performed offline. Given π, one can non-
deterministically apply reductions by =⇒G either until π is obtained (and an-
swer yes only in this case), the size of a term exceeds c|π|, or the reduction gets
stuck. By Theorem 2, there is an execution sequence that outputs yes if and only
if π ∈ L(G′). Since G is fixed (therefore the numbers of relevant non-terminals,
terminals, and combinators are also fixed to be finite values), the actual space re-
quired for storing each intermediate term e is also linearly bounded by |e| ≤ c|π|;
hence this computation can be simulated by a non-deterministic Turing machine
with O(|π|) space. �

14

We sketch the proof of Theorem 2 in the rest of this section. We call a
λ-term of the form λx1. · · ·λxk.xθ(1)xθ(2) · · ·xθ(k) (where k ≥ 1 and θ is a per-
mutation on {1, . . . , k}) an extended permutator. By Theorem 1, there ex-
ists a reduction sequence So = p0 =⇒G,lin p1 =⇒G,lin · · · =⇒G,lin pn = π
where no intermediate term contains more than two consecutive applications
of combinators; hence, there also exists a corresponding reduction sequence
So = p0 =⇒G p1 =⇒G · · · =⇒G pn = π by Lemma 1. Since |p| ≤ |p|, it suf-
fices to show that for every intermediate term p, |p| is linearly bounded by |π|.
It is proved in two steps. In the first step, we show:

Lemma 3. There exists a constant c1 such that if ∅ ` p : o and p ↓λ,lin p′ and
p does not contain more than two consecutive applications of combinators, then
|p| ≤ c1|p′|

The above lemma is obtained by a combinatorial argument on the number of
combinators that may occur in p. See Appendix C for the proof. Note that the
first step does not depend on the choice of C.

In the second step, we show that the size of a linear extended term in normal
form (with respect to −→λ,lin) can be linearly bounded by the size of the tree
π generated by the term.

Lemma 4. There exists a constant c2 such that if p↓lin and p(−→G,lin ∪ −→λ,lin

)∗π, then |p| ≤ c2|π|.

We sketch the proof of the lemma below. See Appendix C for details.
We first define a translation from linear extended grammars to linear λ-

calculus with product types.

Definition 7. The set of linear λ-terms, ranged over by u, is given by:

u ::= x | uU | λ(x1 : γ1, . . . , xk : γk).u U ::= (u1, . . . , uk)

A linear λ-term u is called a pure linear λ-term if the size of every tuple in
u is 1 (i.e., k = 1 for every subterm of the form λ(x1, . . . , xk).u′ or (u1, . . . , uk)
and every type γ1 × · · · × γk → γ). We define asize(u) by:

asize(x) = asize(λ(x1, . . . , xk).u) = 1
asize(u0(u1, . . . , uk)) = asize(u0) + asize(u1) + · · ·+ asize(uk).

We use a meta-variable M for pure linear λ-terms. We often omit parentheses
for unary tuples, and write λx.u for λ(x).u, and u for (u).

The type judgment relation ∆ `L u : γ for linear λ-terms is given by:

{x : γ} `L x : γ
∆] {x1 : γ1, . . . , xk : γk} `L u : γ

∆ `L λ(x1, . . . , xk).u : γ1 × · · · × γk → γ

∆0 `L u0 : γ1 × · · · × γk → γ ∆i `L ui : γi for each i ∈ {1, . . . , k}
∆0] · · ·]∆k `L u0(u1, . . . , uk) : γ

15

Here, ∆0]∆1 is defined to be ∆0 ∪∆1 only if dom(∆0) ∩ dom(∆1) = ∅.
The transformation relations ∆ ` p : γ ⇒ u a ∆′ and ∆ ` P :γ1×· · ·×γk ⇒

U a ∆′ are defined by the rules below.

i fresh

∅ ` a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o⇒ a(i) a a(i) : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o
(LX-Const)

i fresh

{x(i) : γ} ` x(i) : γ ⇒ x(i) a {x(i) : γ}
(LX-V)

∅ ` g : γ ⇒ u a ∅
∅ ` 〈g〉 : γ ⇒ u a ∅

(LX-Com)

∅ ` λx1. · · ·λxk.p : γ ⇒ u a ∆ Ax1 · · · xk → p ∈ R
∅ ` Aλx1.···λxk.p : γ ⇒ u a ∆

(LX-NT)

∆i ` pi : γi ⇒ ui a ∆′i for each i ∈ {1, . . . , `}
∆1] · · ·]∆` ` (p1, . . . , p`) : γ1 × · · · × γ` ⇒ (u1, . . . , u`) :a ∆′1] · · ·]∆′`

(LX-Tup)

∆0 ` p0 : :γ1 × · · · × γk → γ ⇒ u0 a ∆′0
∆1 ` P : γ1 × · · · × γk ⇒ U a ∆′1

∆0]∆1 ` p0 P : γ ⇒ u0 U a ∆′0]∆′1
(LX-App)

∆] {x(i1) : γ1, . . . , x
(i`) : γ`} ` p : γ ⇒ u a ∆′, x(i1) : γ1, . . . , x

(i`) : γ`
x 6∈ dom(∆) ∪ dom(∆′)

∆ ` λx.p : γ1 × · · · × γ` → γ ⇒ λx.u a ∆′
(LX-Ab)

If ∆ ` p : γ ⇒ u a ∆′, then u is different from p only in that each non-terminal
is replaced by the corresponding λ-term (specified by the annotation for the
non-terminal), and that terminal symbols are replaced with variables.

Example 6. Recall G′0 in Example 5. The term

T g2 (〈g〉 a, 〈g〉 b, 〈g〉 a) (e, e, e, e)

occurring in (the linear version of) the production of a (b e e) (a e e) is trans-
formed to:(
λ(g(1), g(2), g(3)).λ(x(1), x(2), x(3), x(4)).g(1)

(
g(2)(x(1), x(2)), (g(3)(x(3), x(4)))

))((
λg.λ(y(1), y(2)).g(y(1), y(2))

)
a(1),

(
λg.λ(y(1), y(2)).g(y(1), y(2))

)
b(2),(

λg.λ(y(1), y(2)).g(y(1), y(2))
)
a(3)

)
(e(1), e(2), e(3), e(4))

with ∆ = a(1) :o→ o→ o, b(2) :o→ o→ o, a(3) :o→ o→ o, e(1) :o, e(2) :o, e(3) :
o, e(4) : o. Here we have reused labels (for i in LX-V) when there is no danger
of variable confusion.

16

The transformation satisfies the following property.

Lemma 5. If ∅ ` p : o and p(−→G,lin ∪ −→λ,lin)
∗π, then there exists u such

that ∅ ` p : o ⇒ u a ∆ where for each terminal symbol a, ∆ ` u : o where for
each terminal symbol a, the number of bindings of the form a(i) in ∆ is the same
as the number of occurrences of a in π.

We can obtain the following property from the above lemma.

Lemma 6. Let G be an order-2 extended grammar over C. If p(−→G,lin ∪ −→λ,lin

)∗π and p↓lin, then there exists a pure linear λ-term M that satisfies: (i) ∆ `L
M : o; (ii) codom(∆) ⊆ {o, o→ o→ o} and |{x | ∆(x) = o}| equals the number
of leaves of π; (iii) asize(M) ≥ |p|; (iv) M contains only top-level β-redexes;
and (v) M does not contain any extended permutator in an argument position,
nor any consecutive application of extended permutators.

Proof Sketch. Since p =⇒∗G,lin π, one can construct a term u that satisfies
the condition of Lemma 5. Let M be the pure linear λ-term obtained from u
by applying the currying transformation, and then normalizing all the redexes
under λ-abstraction. Then M satisfies the required conditions. �

Finally, we show that asize(M) ≤ 28|{x | x : o ∈ ∆}| holds for any pure
linear λ-term M and type environment ∆ that satisfy the conditions (i), (ii),
(iv), and (v). Thus, we have Lemma 4 for c2 = 28. Now we can conclude that
if So = p0 =⇒G,lin p1 =⇒G,lin · · · =⇒G,lin pn = π, then for every intermediate
term p in pi−1 =⇒G,lin pi, |p| is linearly bounded by |π|, since

|p| ≤ c1|pi| ≤ c1c2|π|.

Therefore we have Theorem 2.

5 Related Work

As mentioned in Section 1, higher-order (formal) languages have been intro-
duced in 1970’s and actively studied since then, but a number of problems re-
main open especially about unsafe higher-order languages. Inaba and Maneth [6]
proved that any safe higher-order (word) languages are context-sensitive; they
actually proved the stronger result that the membership is in the intersection of
deterministic linear space and NP. Context-sensitiveness of unsafe higher-order
languages has been open (for order-2 or higher for the tree language case, and
for order-3 or higher for the word language case).

Type-based techniques for reasoning about higher-order grammars have been
recently applied to obtain simpler proofs for the decidability of higher-order (lo-
cal) model checking [9, 12], and the strictness of tree hierarchy [10]. Haddad [4]
developed a type-based transformation to eliminate non-productive OI deriva-
tions in deterministic higher-order tree grammars. He has also recently devel-
oped a type-based method for logical reflection and selection (which is a kind
of grammar transformation) [5]. There is some similarity between the resource

17

λ-calculus [18] and extended terms. In the resource λ-calculus, a function may
be applied to a multiset consisting of linear terms (which must be used exactly
once) and reusable terms (which may be used an arbitrary number of times). In
our extended terms, each element of a set must be used at least once.

6 Conclusion

We have shown that order-2 unsafe tree languages are context-sensitive, by using
novel type-based grammar transformation. It is not yet clear whether this ap-
proach can be extended to show context-sensitiveness of languages of arbitrary
orders. For the general case, we need to find an appropriate set C of combinators,
and generalize the arguments in Section 4, which are currently specific to the
order-2 case. We expect that the grammar transformation in Section 3 is also
useful for reasoning about other properties of higher-order languages, such as
pumping lemmas for higher-order languages.

Acknowledgments. We would like to thank Pawel Parys for spotting errors
in an earlier version of the paper. We thank anonymous reviewers for useful
comments. This work was partially supported by JSPS KAKENHI 23220001
and the Mitsubishi Foundation.

References

1. Aehlig, K., de Miranda, J.G., Ong, C.H.L.: Safety is not a restriction at level 2 for
string languages. In: Proceedings of FoSSaCS 2005. LNCS, vol. 3441, pp. 490–504.
Springer (2005)

2. Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North-Holland (1958)
3. Damm, W.: The IO- and OI-hierarchies. Theor. Comput. Sci. 20, 95–207 (1982)
4. Haddad, A.: IO vs OI in higher-order recursion schemes. In: Proceedings of FICS

2012. EPTCS, vol. 77, pp. 23–30 (2012)
5. Haddad, A.: Model checking and functional program transformations. In: Proceed-

ings of FSTTCS 2013. LIPIcs, vol. 24, pp. 115–126 (2013)
6. Inaba, K., Maneth, S.: The complexity of tree transducer output languages. In:

Proceedings of FSTTCS 2008. LIPIcs, vol. 2, pp. 244–255 (2008)
7. Kartzow, A., Parys, P.: Strictness of the collapsible pushdown hierarchy. In: Pro-

ceedings of MFCS 2012. LNCS, vol. 7464, pp. 566–577. Springer (2012)
8. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:

Proceedings of FoSSaCS 2002. LNCS, vol. 2303, pp. 205–222. Springer (2002)
9. Kobayashi, N.: Model checking higher-order programs. Journal of the ACM 60(3)

(2013)
10. Kobayashi, N.: Pumping by typing. In: Proceedings of LICS 2013. pp. 398–407.

IEEE Computer Society (2013)
11. Kobayashi, N., Inaba, K., Tsukada, T.: On unsafe tree and leaf languages. In

preparation (2014)
12. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus

model checking of higher-order recursion schemes. In: Proceedings of LICS 2009.
pp. 179–188. IEEE Computer Society (2009)

18

13. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of PLDI 2011. pp. 222–233 (2011)

14. Kobele, G.M., Salvati, S.: The IO and OI hierarchies revisited. In: Proceedings of
ICALP 2013. LNCS, vol. 7966, pp. 336–348. Springer (2013)

15. Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl. 15, 1170–1174 (1974)

16. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of LICS 2006. pp. 81–90. IEEE Computer Society (2006)

17. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of POPL 2011. pp. 587–598 (2011)

18. Pagani, M., Rocca, S.R.D.: Solvability in resource lambda-calculus. In: Proceedings
of FOSSACS 2010. LNCS, vol. 6014, pp. 358–373. Springer (2010)

19. Turner, R.: An infinite hierarchy of term languages - an approach to mathematical
complexity. In: Proceedings of ICALP. pp. 593–608 (1972)

20. Wand, M.: An algebraic formulation of the Chomsky hierarchy. In: Category The-
ory Applied to Computation and Control. LNCS, vol. 25, pp. 209–213. Springer
(1974)

Appendix

A Examples of Grammar Transformation

We first describe more details about the transformation in Example 5. Recall G0
in Example 1. Let C = {λg.λx.g x, λg.λx.g x x}. Then, non-terminal C can be
transformed as follows.

g : (o→ o→ o,nc), x : o ` g(o→o→o,nc) xo xo : o⇒ g x x

∅ ` C : ((o→ o→ o,nc)→ >→ o→ o, 〈λg.λx.g x x〉)⇒ 〈λg.λx.g x x〉

g : (o→ o→ o,nc), x : o ` g(o→o→o,nc) xo xo : o⇒ g x x

∅ ` C : (> → (o→ o→ o,nc)→ o→ o, 〈λg.λx.g x x〉)⇒ 〈λg.λx.g x x〉

For F , we have:

g : (o→ o,nc), x : o ` g x : o⇒ g(o→o,nc) xo

∅ ` F : ((o→ o,nc)→ o→ o, 〈λg.λx.g x〉)⇒ 〈λg.λx.g x〉

∅ ` F : ((o→ o,nc)→ o→ o,nc)⇒ F((o→o,nc)→o→o,nc)

The body F (C a b) e may be transformed as follows.

∅ ` F (C a b) : (o→ o,nc)⇒ 〈λg.λx.g x〉{〈λg.λx.g x x〉 a} ∅ ` e : o⇒ {e}
∅ ` F (C a b) e : o⇒ 〈λg.λx.g x〉{〈λg.λx.g x x〉 a} {e}

∅ ` F (C a b) e : o⇒ 〈λg.λx.g x x〉 a e X-Red

∅ ` F (C a b) e : o⇒ a e e
X-Red

19

Here, ∅ ` F (C a b) : (o→ o,nc)⇒ 〈λg.λx.g x〉{〈λg.λx.g x x〉 a} can be obtained
from the transformation for F above and

∅ ` C a b : (o→ o,nc)⇒ {〈λg.λx.g x x〉 a}.

From the above transformations, we obtain the rule So → a e e. The whole
grammar G′0 is as given in Example 5.

Next, recall Example 2. Here are some of the rules obtained by the transfor-
mation. All the flags in the types below are nc, hence omitted. (The whole rules
are too many to be listed here.)

So → F>→>→>→o

So → F(o→o)→o→o→o Go→o a b

Go→o x→ g x e

Ho→o x→ g e x
F>→>→>→o → e

F(o→o)→o→o→o ϕ x y → f F>→>→>→o (f (ϕ y) x)
F(>→o)→o→>→o ϕ x→ f F>→>→>→o (f ϕ x)
F(o→o)→o→o→o ϕ x y → f (F(o→o)→o→o→o (F(o→o)→o→o→o ϕ x) y (Ho→o y)) (f (ϕ y) x)
F(>→o)→o→o→o ϕ x y → f (F(o→o)→o→o→o (F(>→o)→o→o→o ϕ x) y (Ho→o y)) (f ϕ x)
F(>→o)∧(o→o)→o→o→o ϕ>→o ϕo→o x y → f (F(o→o)→o→o→o E y (Ho→o y)) (f ϕ>→o x)

for each E ⊆ {F(>→o)→o→o→o ϕ>→o x, F(o→o)→o→o→o ϕo→o x,
F(>→o)∧(o→o)→o→o→o ϕ>→o ϕo→o x} that contains ϕo→o

F(>→o)∧(o→o)→o→o→o ϕ>→o ϕo→o x y → f (F(o→o)→o→o→o E y (Ho→o y)) (f (ϕo→o y) x)
for each E ⊆ {F(>→o)→o→o→o ϕ>→o x, F(o→o)→o→o→o ϕo→o x,

F(>→o)∧(o→o)→o→o→o ϕ>→o ϕo→o x} that contains ϕ>→o

F(o→o)→o→o→o ϕ x y → f (F(>→o)→o→o→o (F>→>→>→o) y (Ho→o y)) (f (ϕ y) x)
F(>→o)→o→o→o ϕ x y → f (F(>→o)→o→o→o E y (Ho→o y)) (f ϕ x)

for each non-empty E ⊆ {F>→>→>→o, F(>→o)→o→>→o ϕ x}
F(>→o)∧(o→o)→o→o→o ϕ>→o ϕo→o x y → f (F(>→o)→o→o→o E y (Ho→o y)) (f (ϕo→o y) x)

for each E ⊆ {F>→>→>→o, F(>→o)→o→>→o ϕ>→o x} that contains ϕ>→o

F(>→o)→o→o→o ϕ x y → f (F(>→o)→o→>→o E y) (f ϕ x)
for each non-empty E ⊆ {F>→>→>→o, F(>→o)→o→>→o ϕ x}

F(>→o)∧(o→o)→o→o→o ϕ>→o ϕo→o x y → f (F(>→o)→o→>→o E y) (f (ϕo→o y) x)
for each E ⊆ {F>→>→>→o, F(>→o)→o→>→o ϕ>→o x} that contains ϕ>→o

· · ·

B Proof of Theorem 1

Theorem 1 follows from the following three theorems, which are proved in the
following subsections.

Theorem 3. Suppose that ` G ⇒ G′ for G = (Σ,N ,R, S). Then G′ is a valid
extended grammar.

Theorem 4. Suppose that ` G ⇒ G′ for G = (Σ,N ,R, S) and G′ = (Σ′,N ′,R′, So).
If So =⇒∗G′ π for a tree π, then S −→∗G π.

20

Theorem 5. Suppose that ` G ⇒ G′ for G = (Σ,N ,R, S) and G′ = (Σ′,N ′,R′, So).
If S −→∗G π for a tree π, then So =⇒∗G′ π and So =⇒∗G′,lin π.

B.1 Proof of Theorem 3

We define [[Γ]] by:

[[∅]] = ∅ [[Γ, x : τ]] =

{
[[Γ]], xτ : [[τ]] if flag(τ) = nc
[[Γ]] if flag(τ) 6= nc

Lemma 7. If Γ ` t : τ ⇒ e, then [[Γ]] ` e : [[τ]].

Proof. This follows by straightforward induction on the derivation of Γ ` t :
τ ⇒ e. �

Lemma 8. For each triple (Γ, t, τ), the number of e such that Γ ` t : τ ⇒ e is
finite.

Proof. This follows by straightforward induction on the structure of t. �

Proof of Theorem 3. Suppose that ` G ⇒ G′. By the assumption that Cκ is
finite for every κ and Lemmas 2 and 8, the set of rules of G′ is finite. Lemma 7
ensures that each rule obtained by the transformation satisfies the requirement
on typing (i.e., the condition “N (A) must be of the form κ1 → · · · → κk → o

and Γ ∪{x1 :κ1, . . . , xk :κk} `E t : o must hold for some Γ ⊆ N”). The additional
requirements λx1. · · ·λxk.e 6∈ C and e↓ are also satisfied by the conditions on the
set of rules: λVars(K, x1 · · ·xk).e′ 6∈ C ∧ e ↓λ e′. �

B.2 Proof of Theorem 4

Suppose ` G ⇒ G′. We write −→λ,w and −→G′,w for the weaker versions of −→λ

and −→G′ , obtained by weakening the substitution relation by adding the rule:

θ |= e e′

θ ∪ θ′ |= e e′

We write e −→λ,w,o e
′ if it is obtained by applying RLam-Comb to a top-

level redex (which is not guarded by non-terminals or variables). Otherwise we
write e −→λ,w,i e

′. We write e � e′ if e = e′ or e is obtained by removing some
elements from term sets of e′.

Lemma 9. There is no infinite outermost reduction sequence e −→λ,w,o e1 −→λ,w,o

e2 −→λ,w,o · · ·.

Proof. This follows by a standard argument using logical relations. �

Lemma 10. If e −→λ,w,i−→λ,w,o e
′, then there exists e′′ such that e′ � e′′.

21

Proof. We discuss only the case where

e = C[〈λx.λỹ.e0〉(〈f〉E0)Ẽ] −→λ,w,i C[〈λx.λỹ.e′0〉E0 Ẽ]
−→λ,w,o C[e′]

with

[〈f〉x/x]e0 ↓λ,w e′0 [E0/x, Ẽ/ỹ] |= e′0 e′.

The other cases are obvious, since the redexes do not overlap with each other.
By the condition [〈f〉x/x]e0 ↓λ,w e′0, we have [〈f〉E0/x]e0 −→∗λ,w [E0/x]e′0. By

this and the condition [E0/x, Ẽ/ỹ] |= e′0 e′, there exist e′′ and e′′′ such that

[Ẽ/ỹ] |= e0 e′′′ [Ẽ/ỹ] |= e′0 e′′

e −→λ,w,o e
′′′ −→∗λ,w e′′

e′ � e′′,

as required. �

Lemma 11. If e1 −→G′,w e2 and e1 � e′1, then e′1 −→G′,w e
′
2 and e2 � e′2 for

some e′2. Similarly for −→λ,w.

Proof. This follows by straightforward induction on the derivation of e1 −→G′,w

e2 and e1 −→λ,w e2. �

Lemma 12. If e(−→λ,w ∪ −→G′,w)
∗π, then e −→∗G′,w π. Furtheremore, e −→∗G′,w

π reduces the same number of non-terminals as e(−→λ,w ∪ −→G′,w)
∗π.

Proof. If e −→∗λ,w,i e′′ −→G′ e′, then by Lemmas 9 and 10, we have e −→∗λ,w,o−→G′−→∗λ,w
e′′′ with e′ � e′′′ (because the repeated applications of 10 eventually moves the
redex for e′′ −→G′ e′ to a top-level position). By repeatedly applying this prop-
erty and Lemma 11, we get e −→∗G′,w e

′ with π ⊆ e′. But then it must be the
case that e′ = π. �

The following is an immeidate corollary of the above lemma.

Lemma 13. If S =⇒∗G′ π, then S −→∗G′,w π.

Proof. Suppose S =⇒∗G′ π. Then S =⇒∗G′,w π follows immediately. By Lemma 12,
we have S −→∗G′,w π. �

It remains to show that S −→∗G′,w π implies S −→∗G π. We write e −→≤nG′,w e
′ if

there is a reduction sequence e −→G′,w · · · −→G′,w e
′ that uses the rule ER-NT

at most n times. We define the relations |=n t : τ ⇒ e, |=n t : τ ⇒ E, and
|=n t : (τ1, . . . , τ`)⇒ (E1, . . . , Ek) (where t is a closed term, e is a closed extended
term, and Ei’s are sets of closed extended terms) by induction on the structure
of τ as follows.

– |=n t : o⇒ e iff e −→≤nG′,w π implies t −→∗G π

22

– |=n t : (
∧
{τ1, . . . , τ`} → ρ, η) ⇒ e iff for every n′ ≤ n and E1, . . . , Ek,

|=n′ s : (τ1, . . . , τ`) ⇒ (E1, . . . , Ek) implies |=n′ ts : (ρ, η′) ⇒ eE1 · · · Ek,
where η′ = η if flag(τi) 6= nc for every i ∈ {1, . . . , `} and η′ = nc otherwise.

– |=n t : τ ⇒ {e1, . . . , ek} iff |=n t : τ ⇒ ei for every i ∈ {1, . . . , k}.
– |=n t : (τ1, . . . , τ`) ⇒ (E1, . . . , Ek) iff |=n t : τi ⇒ Ei and flag(τi) = nc for
i ∈ {1, . . . , k} and |=n t : τi ⇒ flag(τi) and flag(τi) 6= nc for i ∈ {k+1, . . . , `}.

We also write |=n s : σ ⇒ (E1, . . . , Ek) for |=n s : (τ1, . . . , τ`) ⇒ (E1, . . . , Ek),
when σ =

∧
{τ1, . . . , τ`} and τi < τj for every i < j (assuming that the total order

< has been chosen so that τ < τ ′ whenever flag(τ) = nc and flag(τ ′) 6= nc).
We write (θ1, θ2) |=n Γ if (i) dom(θ1) = dom(Γ), (ii) dom(θ2) = {xτ | x : τ ∈
Γ,flag(τ) = nc} (iii) for every x : τ ∈ Γ with flag(τ) = nc, |=n θ1(x) : τ ⇒
θ2(xτ), and (iv) for every x : τ ∈ Γ with flag(τ) 6= nc, |=n θ1(x) : τ ⇒ flag(τ),
For an open term t, we write Γ |=n t : τ ⇒ e if |=n′ θ1t : τ ⇒ e′ holds whenever
(θ1, θ2) |=n′ Γ and θ2 |= e e′ with n′ ≤ n.

Lemma 14. If Γ ` t : τ ⇒ e, then Γ |=n t : τ ⇒ e holds for every n. If
Γ ` t : τ ⇒ E, then Γ |=n t : τ ⇒ E holds for every n.

Proof. The proof proceeds by double induction on n and the derivation of Γ `
t : τ ⇒ e or Γ ` t : τ ⇒ E, with case analysis on the last rule used in the
derivation.

– Case X-VarC: In this case, Γ = x : τ , t = x, and e = 〈f〉 with flag(τ) = 〈f〉.
Suppose (θ1, θ2) |=n′ Γ and θ2 |= e e′ with n′ ≤ n. Then, it must be
the case that θ2 = ∅ and e′ = e = 〈f〉, so we have |=n′ θ1(x) : τ ⇒ 〈f〉.
Therefore, we have Γ |=n t : τ ⇒ e as required.

– Case X-Var: In this case, Γ = x : τ , t = x, and e = xτ with flag(τ) = nc.
Suppose (θ1, θ2) |=n′ Γ and θ2 |= e e′ with n′ ≤ n. Then, it must be
the case that θ2 = [{e′}/xτ], and |=n′ θ1(x) : τ ⇒ θ2(xτ). Thus, we have
Γ |=n t : τ ⇒ e as required.

– Case X-NT: In this case, Γ = ∅, t = A, and u = Aτ with flag(τ) = nc.
It suffices to show |=n A : τ ⇒ Aτ . Let τ = (

∧
j∈{1,...,`1} τ1,j → · · · →∧

j∈{1,...,`m} τm,j → o,nc) and |=ni ti : (τi,1, . . . , τi,`i) ⇒ (Ei,1, . . . , Ei,ki)

with n ≥ n1 ≥ · · · ≥ nm, and supposeAτ E1,1 · · ·E1,k1 · · ·Em,1 · · ·Em,km −→
≤nm
G′,w

π. We need to show A t1 · · · tm −→∗G π. By the assumption

Aτ E1,1 · · ·E1,k1 · · ·Em,1 · · ·Em,km −→
≤nm
G′,w π,

we have:

Ax1, . . . , xm → t0 ∈ RG
x1 : τ1,1, . . . , x1 : τ1,k1 , . . . , xm : τm,1, . . . , xm : τm,km ` t0 : o⇒ e0
[E1,k1/x1,τ1,k1 , . . . , Em,km/xm,τm,km] |= e0 e′0
e′0 −→

≤nm−1
G′,w π

By the induction hypothesis, we have:

x1 : τ1,1, . . . , x1 : τ1,k1 , . . . , xm : τm,1, . . . , xm : τm,km |=n−1 t0 : o⇒ e0.

23

By the condition |=ni ti : (τi,1, . . . , τi,`i)⇒ (Ei,1, . . . , Ei,ki), we have (θ1, θ2) |=nm

x1 :τ1,1, . . . , x1 :τ1,k1 , . . . , xm :τm,1, . . . , xm :τm,km for θ1 = [t1/x1, . . . , tm/xm]
and θ2 = [E1,k1/x1,τ1,k1 , . . . , Em,km/xm,τm,km]. Thus, we have

|=nm−1 [t1/x1, . . . , tm/xm]t0 : o⇒ e′0.

Since e′0 −→
≤nm−1
G′,w π, we have t −→G [t1/x1, . . . , tm/xm]t0 −→∗G π as re-

quired.
– Case X-NTC; In this case, we have:

Γ = ∅ t = A Ax1 · · · xm → t0 ∈ R
e = 〈λVars(x1 : σ1, . . . , xm : σm, x1 · · ·xm).e0〉
τ = (σ1 → · · · → σm → o, 〈λVars(x1 : σ1, . . . , xm : σm, x1 · · ·xm).e0〉)
x1 : σ1, . . . , xm : σm ` t0 : o⇒ e′0
e′0 ↓λ e0

Let σi =
∧
j∈{1,...,`1} τi,j , |=ni ti : (τi,1, . . . , τi,`i)⇒ (Ei,1, . . . , Ei,ki), and sup-

pose 〈λVars(x1 : σ1, . . . , xm : σm, x1 · · ·xm).e0〉E1,1 · · ·E1,k1 · · ·Em,1 · · ·Em,km −→
≤nm
G′,w

π where n ≥ n1 ≥ · · · ≥ nm. It suffices to show that A t1 · · · tm −→∗G π. By
the induction hypothesis, we have:

x1 : σ1, . . . , xm : σm |=n t0 : o⇒ e′0.

By Lemma 12 with the conditions

〈λVars(x1 : σ1, . . . , xm : σm, x1 · · ·xm).e0〉E1,1 · · ·E1,k1 · · ·Em,1 · · ·Em,km −→
≤nm
G′,w π

and e′0 ↓λ e0, we have

〈λVars(x1 : σ1, . . . , xm : σm, x1 · · ·xm).e′0〉E1,1 · · ·E1,k1 · · ·Em,1 · · ·Em,km −→
≤nm
G′,w π.

Thus, we have e′ such that e′ −→≤nmG′,w π and θ2 |= e′0 e′ for
θ2 = [E1,k1/x1,τ1,k1 , . . . , Em,km/xm,τm,km]. Since (θ1, θ2) |=n x1 : σ1, . . . , xm :
σm for θ1 = [t1/x1, . . . , tm/xm], we have A t1 · · · tm −→G θ1t0 −→∗G π as
required.

– Case X-T: In this case, t = a and e = a, with τ = (o → · · · → o → o,nc).

Suppose that |=ni ti : o ⇒ ei and a e1 · · · eΣ(a) −→
≤nΣ(a)

G′,w π with n ≥
n1 ≥ · · · ≥ nΣ(a). It suffices to show a t1 · · · tΣ(a) −→∗G π. By the condition

a e1 · · · eΣ(a) −→≤nG′,w π, π = a π1 · · · πΣ(a) with ei −→≤nG′,w πi for each i. By
the assumption |=ni ti : o⇒ ei, we have ti −→∗G πi. Thus, we have t −→∗G π
as required.

– Case X-App: In this case, we have:

t = t0t1 e = e0E1 · · ·Ek τ = (ρ, η′)
Γ = Γ0 ∪ (

⋃
i∈{1,...,`} Γi) Γ0 ` t0 : (

∧
{τ1, . . . , τ`} → ρ, η)⇒ e0

Γi ` t1 : τi ⇒ Ei flag(τi) = nc for each i ∈ {1, . . . , k}
Γi ` t1 : τi ⇒ e′1,i flag(τi) 6= nc (for each i ∈ {k + 1, . . . , `})

24

Suppose that (θ1, θ2) |=n Γ and θ2 |= e e′ hold. We need to show |=n θ1t :
τ ⇒ e′. By the assumptions, we have e′0, E

′
1, . . . , E

′
k, θ1,0, θ1,1, θ2,1, θ2,2 that

satisfy the following conditions.

θ1,0 ∪ θ1,1 = θ1 θ2 = θ2,1 ∪ θ2,2 (θ1,0, θ2,0) |=n Γ0 (θ1,1, θ2,1) |=n Γ1 ∪ · · · ∪ Γ`
e′ = e′0E

′
1 · · ·E′k θ2,1 |= (E1, . . . , Ek) (E′1, . . . , E

′
k) θ2,0 |= e0 e′0

Here, the notation θ |= (E1, . . . , Ek) (E′1, . . . , E
′
k) means that there are

θ1, . . . , θk such that θ = θ1∪ · · · θk and θi |= Ei E′i for each i ∈ {1, . . . , k}.
By the induction hypothesis, we have:

Γ0 |=n t0 : (
∧
{τ1, . . . , τ`} → ρ, η)⇒ e0

Γ1 ∪ · · · ∪ Γ` |=n t1 : (τ1, . . . , τ`)⇒ (E1, . . . , Ek)

Thus, we have

|=n θ1,0t0 : (
∧
{τ1, . . . , τ`} → ρ, η)⇒ e′0

|=n θ1,1t1 : (τ1, . . . , τ`)⇒ (E′1, . . . , E
′
k)

Thus, we have |=n θ1t : τ ⇒ e′ as required.
– Case X-Set: Trivial by the induction hypothesis.

�

Proof of Theorem 4. This follows immediately from Lemma 13, ∅ ` S : o ⇒ So
and Lemma 14.
�

B.3 Proof of Theorem 5

Lemma 15. If Γ ` t : τ ⇒ e and flag(τ) 6= nc, then e = flag(τ) and [[Γ]] = ∅.

Proof. This follows by straightforward induction on derivation of Γ ` t : τ ⇒ e.
�

We write Γ `lin t : τ ⇒ p : γ a ∆ if Γ ` t : τ ⇒ p and ∆ ` p : γ. Similarly,
we write Γ `lin t : τ ⇒ P : ×γ a ∆ if Γ ` t : τ ⇒ P and ∆ ` P : ×γ. We just
write Γ ` t : τ ⇒ p if Γ `lin t : τ ⇒ p : γ a ∆ for some ∆ and γ.

Lemma 16 (de-substitution). If Γ `lin [t/x]s : τ ⇒ p : γ a ∆, then

Γ0 ∪ {x : τi | i ∈ I ∪ J} `lin s : τ ⇒ p0 : γ a ∆0] {xτi : γi | i ∈ I}
flag(τi) = nc for i ∈ I flag(τi) 6= nc for i ∈ J
Γi `lin t : τi ⇒ Pi :×γi a ∆i for i ∈ I Γi `lin t : τi ⇒ pi for i ∈ J
p = [Pi/xτi]i∈Ip0
Γ ⊇

⋃
i∈{0}∪I∪J Γi ∆ =

⊎
i∈{0}∪I ∆i

hold for some I, J , Γi(for i ∈ {0}∪I∪J), τi(for i ∈ I∪J), xτi , Pi,γi(for i ∈ I),
and ∆i, pi(for i ∈ {0} ∪ J).

25

Proof. The proof proceeds by induction on the structure of s.

– Case s = x: If flag(τ) = nc, then the result holds for:

p0 = x
(1)
τ I = {1} J = ∅ τ1 = τ P1 = (p)

Γ1 = Γ Γ0 = ∆0 = ∅ γ1 = (γ) ∆1 = ∆

If flag(τ) 6= nc, then by Lemma 15, p = flag(τ) and ∆ = ∅. Thus, the result
holds for:

p0 = p1 = p I = ∅ J = {1} τ ′1 = τ Γ1 = Γ Γ0 = ∆0 = ∅
– Case s = y 6= x, s = a or s = A: In this case, we have Γ `lin s : τ ⇒ p. The

result holds for:

I = J = ∅ p0 = p Γ0 = Γ ∆0 = ∆

– Case s = s1s2: In this case, we have:

Γ ′0 `lin [t/x]s0 : (
∧
{τ ′1, . . . , τ ′`} → ρ, η)⇒ p′0 :×γ′

1 → · · · × γ′
k → o a ∆′0

Γ ′i `lin [t/x]s1 : τ ′i ⇒ P ′i :×γ′
i a ∆′i for each i ∈ {1, . . . , k}

Γ ′i `lin [t/x]s1 : τ ′i ⇒ p′1,i for each i ∈ {k + 1, . . . , `}

τ =

{
(ρ, η) if k = 0
(ρ,nc) if k > 0

Γ =
⋃
i∈{0,1,...,`} Γ

′
i p = p′0P

′
1 · · ·P ′k τ ′1 < · · · < τ ′k

∆ =
⊎
i∈{0,1,...,k}∆

′
i

By applying the induction hypothesis to Γ ′0 `lin [t/x]s0 : (
∧
{τ ′1, . . . , τ ′`} →

ρ, η)⇒ p′0 :×γ′
1 → · · · × γ′

k → o a ∆′0, we obtain:

Γ0,0 ∪ {x : τj | j ∈ I0 ∪ J0} `lin s0 : (
∧
{τ ′1, . . . , τ ′`} → ρ, η)

⇒ p0,0 :×γ′
1 → · · · × γ′

k → o a ∆0,0] {xτj 0 : γ0,j | j ∈ I0}
Γ0,j `lin t : τj ⇒ P0,j :×γ0,j a ∆0,j and flag(τj) = nc for j ∈ I0
Γ0,j `lin t : τj ⇒ p0,j and flag(τj) 6= nc for j ∈ J0
p′0 = [P0,j/xτj 0]j∈I0p0,0
Γ ′0 ⊇

⋃
j∈{0}∪I0∪J0 Γ0,j ∆′0 =]j∈{0}∪I0∆0,j

By applying the induction hypothesis to Γ ′i `lin [t/x]s1 : τ ′i ⇒ P ′i :×γ′
i a ∆′i

(where i ∈ {1, . . . , k}), we have:

Γi,0 ∪ {x : τj | j ∈ Ii ∪ Ji} `lin s1 : τ ′i ⇒ Pi,0 :×γ′
i a ∆i,0] {xτj i : γi,j | j ∈ Ii}

Γi,j `lin t : τj ⇒ Pi,j :×γi,j a ∆i,j and flag(τj) = nc for j ∈ Ii
Γi,j `lin t : τj ⇒ pi,j and flag(τj) 6= nc for j ∈ Ji
P ′i = [Pi,j/xτj i]j∈I0Ui,0
Γ ′i ⊇

⋃
j∈{0}∪Ii∪Ji Γi,j ∆′i =

⊎
{0}∪∈Ii ∆i,j

By applying the induction hypothesis to Γ ′i `lin [t/x]s1 : τ ′i ⇒ p′1,i (where
i ∈ {k + 1, . . . , `}), we have:

Γi,0 ∪ {x : τj | j ∈ Ii ∪ Ji} `lin s1 : τ ′i ⇒ pi,0
Γi,j `lin t : τj ⇒ Pi,j and flag(τj) = nc for j ∈ Ii
Γi,j `lin t : τj ⇒ pi,j and flag(τj) 6= nc for j ∈ Ji
Γi ⊇ Γi,0 ∪

⋃
j∈Ii∪Ji Γi,j

26

By Lemma 15 and η(τ ′i) 6= nc, we have Ii = ∅. Let

Γ0 =
⋃
i∈{0,...,`} Γi,0 ∆0 =

⊎
i∈{0,...,k}∆i,0

I =
⋃
i∈{0,...,k} Ii J =

⋃
i∈{0,...,`} Ji p0 = p0,0P1,0 · · ·Pk,0

Γj =
⋃
i∈{i∈{0,...,`}|j∈Ii} Γi,j Pj = +i∈{i∈{0,...,k}|j∈Ii}Pi,j

xτj = +i∈{i∈{0,...,k}|j∈Ii}xτj i
γj = +i∈{i∈{0,...,k}|j∈Ii}γi,j ∆j =

⊎
i∈{0,...,k}∆i,j (for j ∈ I)

For each j ∈ J , pick i such that j ∈ Ji and let pj and Γj be pi,j and Γi,j
respectively. Then we have the required conditions. �

We write =λ,lin for the least equivalence relation including −→λ,lin.

Lemma 17. If t −→G t′ and ∅ `lin t′ : o ⇒ p′ : o a ∅, then there exists p such
that ∅ `lin t : o⇒ p : o a ∅ with p′ =λ,lin p or p′ −→G′,lin=λ,lin p.

Proof. This follows by induction on the derivation of t1 −→G t2. Since the
induction step is trivial, we show only the base case, where t = As1 · · · s`
and t′ = [s1/x1, . . . , s`/x`]s, with Ax1 · · · x` → s ∈ R. By Lemma 16 and
∅ `lin t′ : o⇒ p′ : o a ∅, we have:

{xk : τk,i | k ∈ {1, . . . , `}, i ∈ Ik ∪ Jk} `lin s : o
⇒ p0 : o a {xk,i : γk,i | k ∈ {1, . . . , `}, i ∈ Ik}

flag(τk,i) = nc for k ∈ {1, . . . , `}, i ∈ Ik flag(τk,i) 6= nc for k ∈ {1, . . . , `}, i ∈ Jk
∅ `lin sk : τk,i ⇒ Pk,i :×γk,i a ∅ for k ∈ {1, . . . , `}, i ∈ Ik
∅ `lin sk : τk,i ⇒ pi for k ∈ {1, . . . , `}, i ∈ Jk
p′ = [Pk,i/xk,τk,i]k∈{1,...,`,i∈Ik}p0

Let p′0 be a term such that p0↓λ,linp′0. Let g be λ ˜x1,i : γ1,ii∈I1 . · · ·λ ˜x`,i : γ`,ii∈I` .p
′
0.

If g ∈ C, then let p be
〈g〉P̃1,ii∈I1 · · · P̃`,ii∈I` .

Then we have p =λ,lin p
′ as required. Otherwise, let p be Agτ P̃1,ii∈I1 · · · P̃`,ii∈I` .

Here, τ = (
∧
{τ1,i | i ∈ I1 ∪ J1} → · · · →

∧
{τ`,i | i ∈ I` ∪ J`} → o,nc). Then

p −→G′,lin=λ,lin p
′ and ∅ ` t : o⇒ p : o a ∅ hold as required. �

The following lemma guarantees that the reduction on linear extended terms
of type o is confluent.

Lemma 18. If p(−→G,lin ∪ =λ,lin)
∗π and p(−→G,lin ∪ =λ,lin)

∗π′ for trees π
and π′, then π = π′.

Proof. We can define the following trivial map p[from a linear extended term
to the linear λ-calculus (with tuples).

x[= x a[= a (Ag)
[

= g[

(pP)
[

= p[P [(〈g〉P)
[

= g[P [

(p1, . . . , pk)
[

= (p1
[, . . . , pk

[) (λ(x1, . . . , xk).g)
[

= λ(x1, . . . , xk).g[.

Then it is trivial that −→G,lin and −→λ,lin preserve the β-equivalence of the

image of (·)[. Thus, we have p[is β-equivalent to both π and π′, which imply
that π = π′. �

27

Proof of Theorem 5. Suppose S −→∗G π. By repeated applications of Lemma 17
to ∅ `lin π : o ⇒ π, we have Sgo (−→G′,lin=λ,lin)

∗π. By induction on the num-
ber of non-terminals occurring in Sgo (including those in annotations), we have
So =⇒∗G′,lin=λ,lin π

′ for some tree π′. By Lemma 18, we have π = π′ as required.
�

C Proofs for Section 4

C.1 Proof of Lemma 3

To show Lemma 3, we first evaluate the number of combinators in a linear
extended term.

Lemma 19. Suppose that p does not contain any consecutive applications of
combinators. Then, the number of combinators in p is no greater than (3|p| −
2)/4.

Proof. This follows by induction on the structure of p. Suppose p is of the form
hP1 · · · Pk, where h is a terminal, a non-temrinal, or a combinator, and k may
be 0 (in which case, h is not a combinator). if h is not a combinator, by the
induction hypothesis, the number of combinators is bounded by

(3|P1| − 2)/4 + · · ·+ (3|Pk| − 2)/4 < (3|p| − 2)/4.

If h is a combinator, then k ≥ 1 and (i) P1 = (p1, . . . , p`) with ` > 1, (ii)
P1 = (h′ P ′1 · · · P ′`) with h′ is not a combinator, or (iii) P1 = (h′ P ′1 · · · P ′`) with
h′ is a combinator and ` > 1, In case (i), the number of combinators is bounded
by

1 +Σi∈{1,...,`}(3|pi| − 2)/4 +Σj∈{2,...,k}(3|Pj | − 2)/4
= (3(1 +Σi∈{1,...,`}|pi|+Σj∈{2,...,k}|Pj |)− 2`− 2(k − 1) + 1)/4
< (3(1 +Σi∈{1,...,`}|pi|+Σj∈{2,...,k}|Pj |)− 2)/4 = (3|p| − 2)/4

as required. In case (ii), the number of combinators is bounded by

1 +Σi∈{1,...,`}(3|P ′i | − 2)/4 +Σj∈{2,...,k}(3|Pj | − 2)/4
= (3(2 +Σi∈{1,...,`}|P ′i |+Σj∈{2,...,k}|Pj |)− 2`− 2(k − 1)− 2)/4
≤ (3(2 +Σi∈{1,...,`}|P ′i |+Σj∈{2,...,k}|Pj |)− 2)/4 = (3|p| − 2)/4

as required. Finally, in case (iii), the number of combinators is bounded by

2 +Σi∈{1,...,`}(3|P ′i | − 2)/4 +Σj∈{2,...,k}(3|Pj | − 2)/4
= (3(2 +Σi∈{1,...,`}|P ′i |+Σj∈{2,...,k}|Pj |)− 2`− 2(k − 1) + 2)/4
≤ (3(2 +Σi∈{1,...,`}|P ′i |+Σj∈{2,...,k}|Pj |)− 2)/4 = (3|p| − 2)/4

as required. �

Lemma 20. Suppose that p does not contain more than two consecutive appli-
cations of combinators. Then, the number of combinators in p is no greater than
6|p|/7.

28

Proof. Suppose that the number of two consecutive applications of combinators
in p is x and the number of combinators in p is y. Then 2x ≤ y. Let p′ be the
linear extended term obtained by replacing each two consecutive applications of
combinators by an application of a single combinator. By the constuction, we
have |p′| = |p| − x, and the number of combinators in p′ is y− x. By Lemma 20,
we have y − x ≤ (3|p′| − 2)/4 ≤ 3(|p| − x)/4. Thus, we have y ≤ 3|p|/4 + x/4 ≤
3|p|/4 + y/8, from which we obtain y ≤ (3/4× 8/7)|p| = 6|p|/7. �

We are now ready to prove Lemma 3.

Proof of Lemma 3. Suppose p↓λ,linp′ and p does not contain more than two con-
secutive applications of combinators. By Lemma 20, the number of combinators
in p is bounded by 6|p|/7. Therefore, the number of terminals or non-terminals
in p is at least |p|/7. Since −→λ,lin does not decrease the number of terminals
or non-terminals, |p′| ≥ |p|/7. Thus, we have |p| ≤ c1|p′| for c1 = 7. �

C.2 Proof of Lemma 5

We first extend the notion of extended permutators (which were defined in Sec-
tion 4 only for λ-terms without tuples) to terms with tuples.

Definition 8. A linear λ-term is an extended permutator if it is in βη long
normal form and of the form

λ(y1,1, . . . , y1,k1). · · ·λ(yi,1, . . . , yi,ki).λx.λ(yi+1,1, . . . , yi+1,ki). · · ·λ(y`,1, . . . , y`,k`).
x (z1,1, . . . , z1,k′1) · · · (z`′,1, . . . , z1,k′

`′
)

where z1,1, . . . , z1,k′1 , . . . , z`′,1, . . . , z1,k′`′ is a permutation of y1,1, . . . , y1,k1 , . . . , y`,1, . . . , y`,k` .

In other words, a linear λ-term p is an extended permutator if p ∈ C.

Lemma 21. If ∆ ` p : γ ⇒ u a ∆′, then ∆′ `L u : γ.

Proof. This follows by straightforward induction on the derivation of ∆ ` p :
γ ⇒ u a ∆′. �

Proof of Lemma 5. Suppose ∅ ` p : o and p(−→G,lin ∪ −→λ,lin)
∗π. By straight-

forward induction on the derivation of ∅ ` p : o, we have u such that ∅ ` p :
o ⇒ u a ∆ and ∆ ` u : o. Since p(−→G,lin ∪ −→λ,lin)

∗π and a reductions
by −→G,lin or −→λ,lin never deletes or copies terminal symbols, u contains the
same number of occurrences of each terminal symbol as π. By the definition of
the transformation relation ∅ ` p : o ⇒ u a ∆, for each terminal symbol a, the
number of bindings of the form a(i) in ∆ is the same as the number of occur-
rences of a in p, hence also the same as the number of occurrences of a in π.
�

29

C.3 Proof of Lemma 6

Lemma 22. There is no linear extended term p such that ∅ ` p : o⇒ u : o a ∅.

Proof. By Lemma 21, we have ∅ `L u : o. But then we must have ∅ `L u′ : o
for the β-normal form u′ of u. This is impossible. (Recall that we do not have a
constant in the linear λ-calculus.) �

Lemma 23. Suppose that ∆ ` p:γ ⇒ u a ∆′ with order(γ) = 1 and codom(∆′) ⊆
{o}. Suppose also that p↓lin, then γ = o → o, ∆ = ∆′ = ∅, and the derivation
for ∅ ` p : γ ⇒ u a ∅ must contain a judgment of the form ∅ ` F : γ′ ⇒ u0 a ∅
such that u0 −→∗ u′0 for some extended permutator u′0.

Proof. By Lemma 21, we have ∆ `L u : γ. Since γ is an order-1 type, the βη
long normal form of u must be λx.x. This implies γ = o→ o, and ∆ = ∆′ = ∅.
We show the remaining condition by induction on the structure of p. Since
∆ = ∆′ = ∅, p must be of the form 〈f〉P1 · · · P` (with ` > 0) or AP1 · · · P`
(where ` may be 0). If ` > 0 (in both cases), by Lemma 22, the order of P1 must
be 1 (because the image of the translation is well-typed under the empty type
environment). By the induction hypothesis, the derivation for the transformation
of P1 must contain a judgment of the required form. If ` = 0, then p = A. Then
A is transformed to u, which is reduced to the extended permutator λx.x as
required. �

Lemma 24. Let p be a linear extended term that does not contain any terminal
symbols. If ∆ ` p : o ⇒ u a ∆′ with codom(∆′) ⊆ {o}, and if p↓lin, then
∆ = ∆′ = x(i) :o. Furthermore, either p = x(i), or the derivation for ∆ ` p :o⇒
u a ∆′ must contain a judgment of the form ∅ ` F : γ′ ⇒ u0 a ∅ such that
u0 −→∗ u′0 for some extended permutator u′0.

Proof. By Lemma 21, we have ∆′ `L u : o. Thus, the normal form of u must
be a variable, and ∆′ = x(i) : o. This also implies ∆ = x(i) : o. We show the
remaining condition by induction on the structure of p. Suppose that p is not a
variable. Then p must be of the form AP1 · · · Pk. Because ∆ 6= ∅, it must be
the case that k > 0. If the order of Pi is 1 for some i ≤ k, then by Lemma 23,
the derivation for the transformation of Pi contains a judgment of the required
condition. Otherwise, every Pi has order 0. If none of P1, . . . , Pk contains a
judgment of the required form, then by the induction hypothesis, it must be the
case that k = 1 and P1 = (x(i)) (because ∆ contains a single variable). In this
case, u = u0 x

(i), with ∅ ` F : o → o ⇒ u0 a ∅. Since u −→∗ x(i), the normal
form of u0 must be λx : o.x. Thus, the judgment ∅ ` F : o→ o⇒ u0 a ∅ satisfies
the required condition. �.

The following is the key lemma, which states that a non-terminal cannot be
transformed to an extended permutator.

Lemma 25. Let G be an order-2 extended grammar over Cm with ar(G) ≤ m
and A be a non-terminal of G. There is no extended permutator u such that
∅ ` A : γ ⇒ u′ a ∆ with u′ −→∗ u.

30

Proof. The proof proceeds by the induction on the number of applications of
rule LX-NT for deriving ∅ ` A : γ ⇒ u′ a ∆. Suppose ∅ ` A : γ ⇒ u′ a ∆
with u′ −→∗ u for an extended permutator u. By Lemma 21 and the subject
reduction property for the simply-typed linear λ-calculus, we have ∆ `L u : γ.
Thus, it must be the case that ∆ = ∅.

We have

Ax1 . . . xk → p0 ∈ R
x1 : γ1, . . . ,xk : γk ` p0 : o⇒ u0 a x1 : γ1, . . . ,xk : γk
γ = (×γ1)→ · · · → (×γk)→ o

u′ = λx1. · · ·λxk.u0
u0 −→∗ x(i)j U1 · · · Uh
{x(i)j }] Û1] · · ·] Ûh = x̂1] · · ·] x̂k.

Here, Û denotes {u1, . . . , uk} for U = (u1, . . . , uk). Since ∅ ` A : γ ⇒ u′ a ∅,
p0 must be either of the form xi P1 · · · P` or A′ P1 · · · P`. In the former case, if
` = 0, then k = 1 with p0 = x1, which contradicts with the assumption that the
extended grammar being considered is an image of the translation. Otherwise
(i.e. if ` > 0), the order of Pi must be 0 (because the order of variable xi is
at most 1). By Lemma 24 and the induction hypothesis, every element of Pi
must be a variable. However, this implies λx1. · · ·λxk.p0 ∈ Cm, which violates
the condition that G is an extended grammar over Cm.

In the latter case (where p0 = A′ P1 · · · P`), u0 must be of the form u′0 U
′
1 . . . U

′
`,

where u′0 is the image of the transformation of A′. By Lemma 23 and the in-
duction hypothesis, at most one element among the elements of P ′i is order 1,
and the other elements are order 0, since an order-1 term must contain a free
variable of order-1, but there is only one order-1 free variable. Thus, the type
of u′0 is γ1,1 × · · · γ1,k1 → · · · → γ`,1 × · · · γ`,k` → o with γi,j being order 1 for
only at most one (i, j) and γi,j = o for the other (i, j). This implies that the
normal form of u′0 must be an extended permutator (note that u′0 must be a
closed linear λ-term). This is however impossible by the induction hypothesis.
�

Proof of Lemma 6. By Lemma 5, there exists u such that ∅ ` p : o ⇒ u a ∆
and ∆ satisfies the second condition. By the definition of the transformation
relation, asize(u) ≥ |p|. Let M be the pure linear λ-term obtained from u by
applying the currying transformation and then normalizing every top-level λ-
abstractions (but leaving top-level redexes as they are). Then M satisfies the
required conditions. To check the last condition, suppose M contains a subterm
(L1(L2M

′)) for permutators L1 and L2. Then by Lemma 25, the corresponding
subterm of p must be of the form 〈g1〉(p1, . . . , pk) with p1 = 〈g2〉P . By the
condition p↓lin, it must be the case that k > 1. Therefore, by the definition of
extended permutators, p1 = 〈g2〉P must have type o, which contradicts with the
condition p↓lin. �

31

C.4 Proof of Lemma 4

We show that for every order-2 pure λ-term M that satisfies all the conditions
of Lemma 6, asize(M) is linearly bounded by the size of π (see Theorem 8). By
combining it with Lemma 6, we obtain Lemma 4.

Below we consider the type judgment ∆ `L u : γ of the linear type system,
restricted to the case where u is a pure linear term (i.e., all the tuples have size
1); thus we usually write K `L M : κ for the judgment.

In Theorem 6, we have stated that extended permutators occur in restricted
positions of M . To give the bound for asize(M), it is actually sufficient to assume
that standard permutators [2] occur in the restricted positions.

Definition 9 (permutators). A pure linear λ-term M is called a permutator
if M is one of the following forms:

(i) λx : o.x
(ii) λy : o→ · · · → o︸ ︷︷ ︸

k

→ o.λx1 : o. · · ·λxk : o.y xθ(1) · · · xθ(k), where θ is a per-

mutation on {1, . . . , k}.

Obviously, the set of permutators is a subset of the set of extended permutators.
We define w(K) as the number of bindings of the form x : o in K, i.e.,

w(K) = |{x | x : o ∈ K}|.

We associate two costs wp(κ) and wc(κ) for each type. Intuitively,

– wp(κ) is the cost for producing a term of type κ, i.e., the minimal w(K)
such that codom(K) ⊆ {o, o→ o→ o} and K `L M : κ for some linear term
M (that does not contain extended permutators as subterms).

– wc(κ) is the cost for consuming a term of type κ, i.e., the minimal w(K)
such that codom(K) ⊆ {o, o→ o→ o} and K, x:κ `L C[x] : o for some linear
applicative context C (that does not contain permutators as subterms). Here,
an applicative context is a context generated by:

C ::= [] |M C | CM.

The costs wp(κ) and wc(κ) are formally defined by:

wp((ok1 → o)→ · · · → (ok` → o)→ o)

=

{
1 if k1 = `− 1 and ki = 0 for every i ∈ {2, . . . , `}
max(0, (k1 + · · ·+ k`)− `+ 1) otherwise

wc((ok1 → o)→ · · · → (ok` → o)→ o)
= wp(ok1 → o) + · · ·+ wp(ok` → o) = |{i ∈ {1, . . . , `} | ki ≤ 1}|

Here, ok → κ is a shorthand for o→ · · · → o︸ ︷︷ ︸
k

→ o.

32

Remark 1. As a special case, we have wc(ok → o) = k and

wp(ok → o) =

{
1 if k ≤ 1
0 if k > 1

The property stated in the following lemma is essentially the standard one
on the relationship between the numbers of nodes and leaves in a tree.

Lemma 26. If x1 : (ok1 → o), . . . , xn : (okn → o) `L M : o, then 1 +
∑n
i=1(ki −

1) = 0.

Proof. This follows by induction on the structure of M . By subject reduction,
we can assume that M is in β-normal form. Since M has type o, M must be
either a variable or an application.

– Case where M is a variable. In this case, it must be the case that n = 1 and
k1 = 0 with M = x1. The result follows immediately.

– Case where M is an application. In this case, M must be of the form
x`M1 · · · Mki , with Kj `L Mj : o for each j ∈ {1, . . . , ki} and {x` : ok` →
o}](

⊎
j∈{1,...,ki}Kj) = {x1 :(ok1 → o), . . . , xn :(okn → o)}. Let Ij = {i | xi ∈

dom(Kj)}. By the induction hypothesis, 1 +
∑
i∈Ij (ki − 1) = 0. Therefore,

we have

1 +
∑n
i=1(ki − 1) = 1 + (k` − 1) +

∑k`
j=1

∑
i∈Ij (ki − 1)

= k` +
∑k`
j=1(−1)

= k` − k` = 0

as required. �

Lemma 27. If x1 : o, . . . , xm : o, y1 : o → o → o, . . . , yn : o → o → o `L M : o
and M is a β-normal form, then n = m− 1.

Proof. This is a special case of Lemma 26. �

Lemma 28. Suppose that M is in βη long normal form and M is not a per-
mutator. If K `L M : κ and codom(K) ⊆ {o, o→ o→ o}, then w(K) ≥ wp(κ).

Proof. Let κ = (ok1 → o)→ · · · → (okn → o)→ o. If k1 = `− 1 and ki = 0 for
every i ∈ {2, . . . , `}, then the only closed term that is in βη long normal form is
a permutator. Since M is not a permutator, it must be the case that w(K) ≥
1 = wp(κ). Otherwise, M = λx1 · · ·xn.M ′ with K, x1 : (ok1 → o), . . . , (okn →
o) `L M ′ : o. If By Lemma 26, we have 1 − w(K) +

∑n
i=1(ki − 1) ≤ 0, so, we

have

w(K) ≥ 1 +

n∑
i=1

(ki − 1) = k1 + · · ·+ kn − n+ 1.

Since w(K) ≥ 0, we have

w(K) ≥ max(0, 1 +

n∑
i=1

(ki − 1) = k1 + · · ·+ kn − n+ 1) = wp(κ)

as required. �

33

Lemma 29. wc(κ1) + · · ·+wc(κn) ≤ wp(κ1 → · · · → κn → κ) +wc(κ) +n−1
holds for all n ≥ 0, κ1, . . . , κn and κ (such that order(κi) ≤ 1 and order(κ) ≤
2). If wp(κ→ κ′) = 0, then wc(κ) < wc(κ′) holds.

Proof. Without loss of generality, we can assume:

κi = oki → o κ = (okn+1 → o)→ · · · → (okn+m → o)→ o

By the definition of wp and wc, we have:

wp(κ1 → · · · → κn → κ) + wc(κ) + n− 1− (wc(κ1) + · · ·+ wc(κn))
≥ k1 + · · ·+ kn+m − (n+m) + 1 + |{i ∈ {n+ 1, . . . , n+m} | ki ≤ 1}|+ n− 1− (k1 + · · ·+ kn)
= (kn+1 + · · ·+ kn+m −m) + |{i ∈ {n+ 1, . . . , n+m} | ki ≤ 1}|
= (kn+1 − 1) + · · ·+ (kn+m − 1) + |{i ∈ {n+ 1, . . . , n+m} | ki ≤ 1}|
≥ −|{i ∈ {n+ 1, . . . , n+m} | ki = 0}|+ |{i ∈ {n+ 1, . . . , n+m} | ki ≤ 1}|
≥ 0

Thus, we have wc(κ1)+ · · ·+wc(κn) ≤ wp(κ1 → · · · → κn → κ)+wc(κ)+n−1
as required.

To show the second property of the lemma, suppose that κ = ok1 → o and
κ′ = (ok2 → o) → · · · → (okm → o) → o with wp(κ → κ′) = 0. We need to
show wc(κ′)−wc(κ) = |{i ∈ {2, . . . ,m} | ki ≤ 1}| − k1 > 0.

By the assumption wp(κ→ κ′) = 0, we have k1+ · · ·+km−m+1 ≤ 0, which
implies k1 ≤ (1−k2)+ · · ·+(1−km). Thus, |{j ∈ {2, . . . ,m} | kj = 0}| ≥ k1. If it
were the case m− 1 = k1, then k2 = · · · = km = 0 and κ = κ′ = ok1 → o, so we
have wp(κ→ κ′) = 1, which contradicts with the assumption wp(κ→ κ′) = 0.
Thus, we have m− 1 > k1. By k1 + · · ·+ km −m+ 1 ≤ 0, we have:

|{i ∈ {2, . . . ,m} | kj ≤ 1}| − k1 = (m− 1− |{i ∈ {2, . . . ,m} | kj ≥ 2}|)− k1
≥ m− 1− (k2 + · · ·+ km)/2− k1
≥ m− 1− (k2 + · · ·+ km)/2 + (k2 + · · ·+ km)−m+ 1
= (k2 + · · ·+ km)/2

If (k2+· · ·+km)/2 > 0, then the result follows immediately. If (k2+· · ·+km)/2 =
0, then from the second line of the above inequalities, we have

|{i ∈ {2, . . . ,m} | kj ≤ 1}| − k1
≥ m− 1− (k2 + · · ·+ km)/2− k1 = m− 1− k1 > 0

�

Lemma 30. Suppose that M is an applicative combination of pure linear λ-
terms in βη long normal form, and that M does not contain permutators. If K `L
M : κ and codom(K) ⊆ {o, o → o → o} with order(κ) ≤ 1, then asize(M) ≤
7w(K) + 4wc(κ)− 6.

Proof. This follows by induction on the structure of M .

34

– Case M = x: In this case, K = x : κ. Since codom(K) ⊆ {o, o → o → o}, κ
is either o or o → o → o. In the former case, w(K) = 1 and wc(κ) = 0, so
that 7w(K) + 4wc(κ)− 6 = 1 = asize(M). In the latter case, w(K) = 0 and
wc(κ) = 2, so that 7w(K) + 4wc(κ)− 6 = 2 ≥ asize(M).

– Case M is a λ-abstraction: By the assumption on the form of M , M is
βη long normal form λx1 · · ·xk.M ′ with K, x1 : o, . . . , xk : o `L M ′ : o and
κ = ok → o. The result follows immediately if w(K) > 0 or wc(κ) = k > 1
holds. We show that indeed w(K) > 0 or wc(κ) = k > 1 must be the case.
Suppose w(K) = 0 and k ≤ 1. Since w(K) = 0, K must be of the form
y1 :o→ o→ o, . . . , ym :o→ o→ o. By Lemma 27, m = k− 1, which implies
m = 0 and k = 1. Thus, we have x : o `L M ′ : o. By the typing rules, M ′

must be x, but then M = λx.x, which contradicts with the requirement that
M must not be a permutator.

– Case M = LM1 . . . M`, with ` > 0 and L is not an application. In this case,
we have:

K0 `L L : κ1 → · · · → κ` → κ
Ki `L Mi : κi
K = K0] · · ·] K`
order(κi) ≤ 1

Since order(κi) ≤ 1, by the induction hypothesis, we have

asize(Mi) ≤ 7w(Ki) + 4wc(κi)− 6

Thus,

asize(M) = 1 + asize(M1) + · · ·+ asize(M`)
≤ 1 + 7(w(K1) + · · ·+ w(K`)) + 4(wc(κ1) + · · ·+ wc(κ`))− 6`

If ` ≥ 2, then by Lemmas 28 and 29, we have

asize(M) ≤ 1 + 7(w(K1) + · · ·+ w(K`)) + 4(wc(κ1) + · · ·+ wc(κ`))− 6`
≤ 7(w(K1) + · · ·+ w(K`)) + 4(wp(κ1 → · · · → κ` → κ) + wc(κ) + `− 1)− (6`− 1)

(by Lemma 29)
= 7(w(K1) + · · ·+ w(K`)) + 4wp(κ1 → · · · → κ` → κ) + 4wc(κ)− (2`+ 3)
≤ 7(w(K1) + · · ·+ w(K`)) + 4w(K0) + 4wc(κ)− 6 (by Lemma 28)
≤ 7(w(K0) + w(K1) + · · ·+ w(K`)) + 4wc(κ)− 6
= 7w(K) + 4wc(κ)− 6 (by K = K0] · · ·] K`)

If ` = 1 and wp(κ1 → κ) ≥ 1, then we have

asize(M) ≤ 1 + 7w(K1) + 4wc(κ1)− 6
≤ 1 + 7w(K1) + 4(wp(κ1 → κ) + wc(κ))− 6 (by Lemma 29)
≤ 7w(K1) + 5wp(κ1 → κ) + 4wc(κ)− 6 (by wp(κ1 → κ) ≥ 1)
≤ 7w(K1) + 5w(K0) + 4wc(κ)− 6 (by Lemma 28)
≤ 7(w(K1) + w(K0)) + 4wc(κ)− 6
= 7w(K) + 4wc(κ)− 6 (by K = K0] K1)

35

If ` = 1 and wp(κ1 → κ) = 0, then we have

asize(M) ≤ 1 + 7w(K1) + 4wc(κ1)− 6
< 7w(K1) + 4(wc(κ1) + 1)− 6
≤ 7w(K1) + 4wc(κ)− 6 (by the second claim of Lemma 29)

as required. �

Theorem 6. Suppose that M is an applicative combination of pure linear λ-
terms each of which is in βη long normal form, and that M does not contain
permutators. If K `L M : o and codom(K) ⊆ {o, o → o → o}, then asize(M) ≤
7w(K)− 6.

Proof. This follows as an immediate corollary of Lemma 30. �

The following lemma is similar to Lemma 19.

Lemma 31. Let M be an applicative combination of pure linear λ-terms each
of which is in βη long normal form (that may include permutators). Suppose
that M itself is not a permutator, and that M contains neither (i) a consecutive
application of permutators (i.e. a subterm of the form L1(L2N) where L1 and L2

are permutators) nor (ii) a permutator in an argument position (i.e., a subterm
of the form N L where L is a permutator). Then the number of permutators in
M is no greater than (3asize(M)− 2)/4.

Proof. This follows by induction on the structure of M . Suppose that M is of
the form XM1 · · · Mk where X is a variable or an abstraction. If X is not a
permutator, by the induction hypothesis, the number of permutators in M is not
greater than (3asize(M1)−2)/4+ · · ·+(3asize(Mk)−2)/4 < (3asize(M)−2)/4.
If X is a permutator, then by the assumption on the form of M , k ≥ 1 and
M1 is of the form Y N1 . . . , N` where either Y is not a permutator, or Y is a
permutator and ` ≥ 2. In the former case, the number of permutators in M is
bounded by:

1 + (
∑`
i=1(3asize(Ni)− 2)/4) + (

∑k
j=2(3asize(Mj)− 2)/4)

= (3(2 +
∑`
i=1 asize(Ni) +

∑k
j=2 asize(Mj))− 2− 2`− 2(k − 1))/4

≤ (3asize(M)− 2)/4

In the latter case, the number of permutators in M is bounded by:

2 + (
∑`
i=1(3asize(Ni)− 2)/4) + (

∑k
j=2(3asize(Mj)− 2)/4)

= (3(2 +
∑`
i=1 asize(Ni) +

∑k
j=2 asize(Mj)) + 2− 2`− 2(k − 1))/4

= (3asize(M) + 2− 2`− 2(k − 1))/4
≤ (3asize(M)− 2)/4 (by k ≥ 1, ` ≥ 2)

�

36

Theorem 7. Let M be an applicative combination of pure linear λ-terms (that
may include extended permutators) each of which is in βη normal form. Suppose
that K `L M : o with codom(K) ⊆ {o, o→ o→ o}, and that M contains neither
(i) a consecutive application of permutators (i.e. a subterm of the form L1(L2N)
where L1 and L2 are permutators) nor (ii) a permutator in an argument position
(i.e., a subterm of the form N L where L is a permutator). Then asize(M) ≤
28w(K).

Proof. By Lemma 31, the number of permutators inM is bounded by (3asize(M)−
2)/4. Let M ′ be the term obtained by (recursively) replacing every term of the
form LN (where L is a permutator) with N . Since L has a type of the form
κ → κ, M ′ is also a well-typed linear term, and M ′ does not contain permu-
tators. Thus by Theorem 6, asize(M ′) ≤ 7w(K) − 6. By Lemma 31, we have
asize(M ′) ≥ asize(M)− (3asize(M)− 2)/4 = (asize(M) + 2)/4. Thus, we have
(asize(M) + 2)/4 ≤ 7w(K)− 6, which implies asize(M) ≤ 28w(K). �

Theorem 8. Let M be an applicative combination of pure linear λ-terms (that
may include permutators) each of which is in βη normal form. Suppose that
K `L M : o with codom(K) ⊆ {o, o → o → o}, and that M contains neither (i)
a consecutive application of permutators (i.e. a subterm of the form L1(L2N)
where L1 and L2 are permutators) nor (ii) a permutator in an argument position
(i.e., a subterm of the form N L where L is a permutator). If M −→∗ π 6−→
(hence π is a normal form that corresponds to a tree), then asize(M) ≤ 28|π|.

Proof. By subject reduction, K `L π : o, which implies |π| ≥ w(K). Thus, by
Theorem 7, we obtain asize(M) ≤ 28w(K) ≤ 28|π| as required. �

We can now prove Lemma 4.

Proof of Lemma 4. Let c2 = 28. Suppose p↓λ,lin and p(−→G,lin ∪ −→λ,lin)
∗π.

By Lemma 6, there exists a pure λ-term M and a type environment ∆ that
satisfies the conditions of Lemma 6, in particular, |p| ≤ asize(M) holds. By
Theorem 8, we have |p| ≤ asize(M) ≤ 28|π| as required.

C.5 Proof of Theorem 2

We can now prove Theorem 2. Let G = (Σ,N ,R, S) be an order-2 extended
grammar over C and `C G ⇒ G′. Let c be 7 × 28 = 196. Suppose π ∈ L(G).
By Theorem 1, there exists a reduction sequence Sgo =⇒G′,lin p1 =⇒G′,lin

· · · =⇒G′,lin pn =⇒G′,lin π where no intermediate term contains more than
two consecutive applications of combinators. Thus, by Lemma 1, there also ex-
ists a corresponding reduction sequence So = p0 =⇒G p1 =⇒G · · · =⇒G pn = π.
Since |p| ≤ |p|, it remains to show |p| ≤ c|π| holds for every intermediate term
p. This follows from Lemmas 3 and 4. �

37

