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Abstract
Although monadic second-order logic (MSO) has been a founda-
tion of XML queries, little work has attempted to take MSO formu-
lae themselves as a programming construct. Indeed, MSO formulae
are capable of expressing (1) all regular queries, (2) deep matching
without explicit recursion, (3) queries in a “don’t-care semantics”
for unmentioned nodes, and (4)n-ary queries for locatingn-tuples
of nodes. While previous frameworks for subtree extraction (path
expressions, pattern matches, etc.) each had some of these proper-
ties, none has satisfied all of them.

In this paper, we have designed and implemented a practical
XML transformation language called MTran that fully exploits the
expressiveness of MSO. MTran is a language based on “select-and-
transform” templates similar in spirit to XSLT. However, we design
our templates specially suitable for expressing structure-preserving
transformation, eliminating the need for explicit recursive calls to
be written. Moreover, we allow templates to be nested so as to make
use of ann-ary query that depends on then− 1 nodes selected by
the preceding templates.

For the implementation of the MTran language, we have de-
veloped, as the core part, an efficient evaluation strategy forn-ary
MSO queries. This consists of (a) an exploitation of the existing
MONA system for the translation from MSO formulae to tree au-
tomata and (b) a linear time query evaluation algorithm for tree au-
tomata. For the latter, our algorithm is similar to Flum-Frick-Grohe
algorithm for MSO queries locatingn-tuples ofsets ofnodes, ex-
cept that ours is specialized to queries for tuples ofnodesand em-
ploys apartially lazy set operationsfor attaining a simpler imple-
mentation with a fewer number of tree traversals. We have made
experiments and confirmed that our strategy yields a practical per-
formance.

1. Introduction
As an analogy to first-order logic being a basis for relational
queries, monadic second-order logic (MSO) has gradually stabi-
lizing its position as a foundation of XML processing. For exam-
ple, there have been proposals for XML query languages whose
expressivenesses are provably MSO-equivalent [28, 20] and for
theoretical models for XML transformation with MSO as a sublan-
guage for node selection [22, 23]. However, little attempt has been

Proceedings of the 5th ACM SIGPLAN Workshop on Programming Language Tech-
nologies for XML (PLAN-X 2007).
January 20, 2007, Nice, France.

made for bringing MSO logic formulae themselves into an actual
language system for XML processing.

The goal of our work is to design and implement a practi-
cal XML transformation language calledMTran based on MSO
queries, in particular, addressing the following two challenges:

• a surface language design for XML transformation that lever-
ages the strength of MSO queries, and

• an efficient algorithm to process MSO queries.

Our implementation of MTran is publicly available in
http://arbre.is.s.u-tokyo.ac.jp/∼kinaba/MTran.

1.1 Why MSO?

MSO is first-order logic extended with second-order variables rang-
ing over sets of domain elements in addition to first-order variables
ranging over domain elements themselves. Among various vari-
ants, WS2S (Weak Second-order logic with two Successors) is a
kind of MSO specialized to express propositions over finite binary
tree structures. Why do we think that such logic is suitable for writ-
ing queries on XML documents? The reasons are fourfold.

• The class of all regular queries can be captured.

• No explicit recursions are required to locate nodes distant from
context nodes.

• There is no need to mention the nodes that are irrelevant to the
query (“don’t-care semantics”).

• N -ary queries are naturally expressible.

While existing languages such as path expressions [9, 1, 7, 25],
pattern matches [15, 2], and monadic datalog queries [20] have
some of these properties, MSO is the only language that has all
of them, as we argue below (the summary is in Table 1).

Regularity A query over trees is called regular when there is
an equivalent tree automaton with an appropriate alphabet (Sec-
tion 4.1). MSO is known to be able to express all regular queries
[31], while most of existing path-based node selection languages
(including XPath [9], currently the most popular path language) do
not have this property. This lack of regularity does not only indicate
theoretical weakness, but also has a practical impact since it fails to
represent even slightly complicated conditions. An obvious exam-

Regularity No Recursion Don’t care N-ary
Pattern

√ √
Path

√ √
Datalog

√ √
MSO

√ √ √ √

Table 1. Comparisons between query languages
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ple is that one cannot write “select every node that conforms to a
specified schema for XML” since schemas written in usual schema
languages like DTD [6], XML Schema [11], and RELAX NG [10]
heavily rely on regular expressions for trees (in particular, RELAX
NG schemas can represent any regular tree languages). As a more
realistic example, the following query

“select, from an XHTML document, every<h2> node that
appears between the current node and the next<h1> node
from the current node in the document order”

is naturally expressible in MSO as we will see in Section 2.1,
whereas it is not in most path languages.

No recursion The way that MSO formulae express retrieval con-
ditions is, in a sense, “logically direct.” In particular, it does not
require recursively defined constraints for reaching nodes that are
located in arbitrarily deep positions. Several query languages such
regular expression patterns and monadic datalog, while being able
to capture all regular queries, incur recursive definitions for deep
matching. As a result, even an extremely simple query like “select
all <img> elements in the input document” needs an explicit recur-
sion. Writing down recursion is often tedious work and in particular
unfriendly to naive programmers; it is much more helpful to be able
to express such a simple query like

x in <img>

(“nodex that has labelimg”) in MSO.

Don’t-care semantics The directness of MSO also allows us to
completely avoid mentioning nodes that are irrelevant to the query.
It is in contrast to some languages such as regular expression
patterns, where we need to specify conditions that the whole tree
structure should satisfy. For example, consider writing a query
that retrieves the set of nodesx containing at least one child node
labeled<date>. In regular expression patterns, we would write as
follows

x as ~[Any, date[Any], Any]

where we have to “mention” the siblings and the content of the
<date> node by the wild cardAny to complete the pattern. In MSO,
on the other hand, we can write in the following way

ex1 y: x/y & y in <date>

(“nodex where some nodey is a child ofx and has labeldate”)
where we only refer to the nodes of our interest: the nodex it-
self and the child<date> nodey. No condition is ever explic-
itly specified for other irrelevant nodes, even by wildcards. This
“don’t-care semantics” might not be advantageous for specifying
a very complicated constraint such as conformance to a schema,
while it makes most of usual queries extremely concise. (Although
the MSO formula in the above example is not much smaller than
the pattern, we will later see plenty of MSO examples that ex-
press various complicated queries with remarkably small formu-
lae. Theoretically, it is known that MSO formulae can in general be
hyper-exponentiallysmaller than their equivalent regular expres-
sions [14].)

N -ary queries An n-ary query locatesn-tuples of nodes of the
input XML tree that simultaneously satisfy a specified condition.
MSO, as it is a formal logic, can naturally expressn-ary queries by
formulae with distinctn free variables. For example, the following
ternary query

ex1 p: p/x & p/y & p/z &
x<y & y<z & y in <item>

expresses the condition for three nodesx, y, andz that they share
a common parent nodep, that they appear in this order, and that

the nodey is tagged with<item>. Although path-based query lan-
guages like XPath suit to express binary queries (that is, relations
between a previously selected node, i.e., context node, and an-
other node), they cannot represent generaln-ary queries. Similarly,
monadic datalog can express arbitrary unary MSO formulae but not
any higher-arity queries.

1.2 XML Transformation with MSO

MSO by itself is thus a powerful specification language for node
selection. However, our aim is to further make use of MSO formu-
lae for the transformation of XML documents. Then, the question
is: what is a language design principle that fully exploits the high
expressive power of MSO?

Structure-preserving transformation Since it is one of MSO’s
advantages that we can select nodes in any depth with no explicit
recursions, it would paradigmatically be smooth if we can also
express a transformation of trees of any depth without any recur-
sions. Suppose we want to enclose with a<li> every <ul> el-
ement whose parent is also an<ul> element. (Direct nesting of
<ul> elements is a common mistake in representing nested lists in
XHTML. The transformation is intended to correct it and emits a
valid XHTML document.) In our language, this transformation can
be written by the following one line:

{visit x :: <ul>/x & x in <ul> :: li[x]}
Here, we first select all<ul> elements with<ul> parent by the
MSO formula “<ul>/x & x in <ul>” and then transform each
of these elements accordingly to the associated rule, i.e., enclose
the element by the<li> tag. The whole output is the reconstruction
of the input tree where each selected element is replaced by the
result of its local transformation.

Compare the above program in our language with the same
transformation written in XSLT [8]:

<xsl:stylesheet version="1.0" ...>
<xsl:template match="ul[parent::ul]">

<li>
<ul>
<xsl:apply-templates select="@*|node()"/>
</ul>

</li>
</xsl:template>
<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

In this, after selecting a<ul> element, we create a<li> element
containing a<ul> element andthen explicitly make a recursive
application of the template to the child nodes (using an instruc-
tion <xsl:apply-templates/>) for computing the content of the
<ul> element. Our design principle is to eliminate such explicit
recursion and thus avoid the necessity to follow the data flow for
understanding the program, which makes transformation more in-
tuitively readable and writable for naive programmers.

Also, in XSLT, we need an explicit template that recursively
copies all unremarked nodes. However, as discussed in the preced-
ing section, one of the benefits of MSO is itsdon’t-care seman-
tics that allows us to avoid mentioning irrelevant nodes. We further
push this merit to our transformation language: ourvisit expres-
sions implicitly copy all irrelevant nodes so as not to bother pro-
grammers with writing recursion.

Choice ofvisit and gather While avisit expression retains
in the result the nodes that arenot matched, we provide another
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List[
{gather p :: p in <map> ::
{gather n :: p/<name>/n ::
{gather v :: p/<value>/v ::

Pair[ n ", " v ]
}}}]

Figure 1. A transformation using binary queries

choice of treating such unmatched nodes, namely, dropping them
by using agather expression. It is important to be able specify
which to use in each use of an MSO formula since real transfor-
mations almost always need a fine control on the structure of the
output. As an example, the following

<ul> {gather x :: x in <a> :: li[x]} </ul>

is similar to the previous example except that it usesgather in-
stead ofvisit. The result is aul element containing the list of
all <a> elements appearing in the input XML, each wrapped by a
<li> element.

Nested templates XSLT uses XPath binary queries for selecting
a node with respect to a single previously selected node. Our lan-
guage pushes this approach further for exploiting MSO’s capability
to express generaln-ary queries. Specifically, we allow templates
to be nested and an inner MSO formula to refer to variables that
are bound in the outer templates. For example, see the program in
Figure 1. This program converts a document representing a one-to-
many mapping, e.g.,

<mapping>
<map> <name>Hello</name>

<value>1</value>
<value>2</value> </map>

<map> <name>World</name>
<value>3</value>
<value>4</value> </map>

</mapping>

to another representing a many-to-many mapping:

<List>
<Pair>Hello, 1</Pair> <Pair>Hello, 2</Pair>
<Pair>World, 3</Pair> <Pair>World, 4</Pair>

</List>

Notably, in the inner-most selection condition for the variablev,
which is inside the scope where we have already selected a node for
n, we directly refer to the variablep that is bound in the two-block
outer scope. Note that such flexibility, which is not present in XSLT,
can naturally be obtained by the combination of logic formulae
with free variables and nested templates with lexical scoping. Note
also that this example only uses binary queries, but it is clear that
we can also specify higher-arity queries in the same framework.

1.3 MSO Evaluation Algorithm

In order to implement a practical system for our transformation
language, we critically need an efficient evaluation algorithm for
n-ary MSO queries, that is, an algorithm that takes, as inputs, an
MSO formula withn free variables and a tree structure, and returns
the set ofn-tuples that satisfy the formula.

A slightly more detailed explanation is needed on the moti-
vation. Programs in MTran actually donot directly select tuples
of nodes that simultaneously satisfy a given condition, but select
nodes that satisfy the conditionrelative tonodes already selected
by previous queries. Ann-ary query algorithm is still useful for
this purpose and indeed crucial. To illustrate this, let us see again

the example in Figure 1. First of all, notice that we could process
each query using only aunaryquery algorithm. That is, we first lo-
cate all the<map> elements in the input document. Then, foreach
<map> element, we execute the inner formulap/<name>/n, inter-
preting it as a unary query on the variablen under the fixed binding
of the variablep to themap element. Unfortunately, this strategy is
inefficient since the above formula is evaluated as many times as the
number of the<map> elements appear in the input document; since
a unary query takes a linear time in the size of the input, the binary
query that we wanted would take a quadratic time. Fortunately, if
there is an efficientn-ary query algorithm, this can be improved:
evaluate the above formula only once for locating all pairs of an
element and a<name> element that are in the parent-child relation.
This observation has first been made by Berlea and Seidl [3] in the
context of their language based on binary queries, and can easily be
extended to our case withn-ary queries.

We have therefore developed an efficient implementation strat-
egy for n-ary MSO queries. This consists of usual two steps: (1)
compilation of MSO formulae to tree automata and (2) evalua-
tion of n-ary queries represented by tree automata. The first step
is well known to take a non-elementary time in the worst case. Our
approach is to exploit the MONA system [17], which has an es-
tablished reputation in its compact and efficient representation of
WS2S MSO formulae by tree automata with binary decision dia-
grams and is experimentally shown to work quickly for large for-
mulae even of dozens of kilobytes [18]. Our preliminary experi-
ments confirm that, for many typical examples of XML queries,
MONA yields adequate performance (Section 5).

For the second step, we have developed an efficient linear-time
algorithm forn-ary MSO queries. This algorithm is similar to the
one developed by Flum, Frick, and Grohe [12]. However, while
they treat general MSO queries with second-order free variables,
our language only needs queries with first-order free variables
and therefore we specialize their algorithm to our simpler case.
In addition, we employ a novel implementation technique called
partially lazy operations on sets of nodes, by which we obtain a
simpler implementation with a fewer number of traversals on the
input tree.

1.4 Related Work

DTL [22] and its generalization TL [23] are theoretical models for
XML transformation that use MSO formulae for node selection.
However, their goals are to find theoretical properties of transfor-
mation models (such as decidability of precise typechecking, which
is not known for our language) whereas ours is to obtain a concrete
design and an efficient implementation technique for a transforma-
tion language leveraging the full strength of MSO. Indeed, we have
incorporated a number of design considerations not present in their
languages. Specifically, our language allows transformation of ar-
bitrarily deep trees without recursion, while theirs incurs explicit
recursion; ours provides the choice of retaining and dropping for
nodes not selected by queries, while theirs allows only the second;
ours allows nested templates to make use ofn-ary queries, while
theirs is limited to binary queries.

Nakano has proposed an XML transformation language XTiSP
[26] that hasvisit andinvite constructs. Although these look
similar to ourvisit andgather, they have slightly simpler se-
mantics (e.g., they can go only forward) for their primary purpose
of stream processing. Also, XTiSP uses path expressions for node
selection and thus is limited to binary queries.

Finding a fast algorithm for MSO queries has been a topic
attracting numerous researchers. Early work by Neven and van den
Bussche has described a linear-time, two-pass algorithm for unary
queries based on boolean attribute grammars [27]. Then, Flum,
Frick, and Grohe have solved the general case by showing a linear-
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pred subheading(var1 a, var1 b, var2 B, var2 A)
= b in B & a<b & all1 x:(a<x & x in A => b<x);

{visit b :: b in <body> :: body[
h1["index"]
ul[ {gather h2 :: h2 in <h2> ::
li[ {gather t :: h2/t :: t} ul[
{gather h3 :: subheading(h2,h3,<h3>,<h2>) ::
li[ {gather t :: h3/t :: t} ul[
{gather h4 :: subheading(h3,h4,<h4>,<h3>) ::
li[ {gather t :: h4/t :: t} ul[
{gather h5 :: subheading(h4,h5,<h5>,<h4>)::
li[ {gather t :: h5/t :: t} ]
} ]]} ]]} ]]} ]

{gather c :: b/c :: c}
]}

Figure 2. Example: Table of Contents

time, three-pass algorithm [12]. Notably, their algorithm’s time
complexity is linear both in the sizes of the input and the output.
Afterward (apparently not noticing the last work), several other
algorithms have been published that either have higher complexity
or have linear-time complexity with only restricted cases treated
[20, 3, 29], though each of these has made orthogonal efforts
in either implementation techniques or theoretical properties. As
already mentioned, our contribution with respect to Flum-Frick-
Grohe algorithm is the technique using partially lazy set operations
for a simpler and quicker (by constant factor) implementation with
concrete experimental results.

1.5 Outline

The rest of this paper is organized as follows. Section 2 gives
slightly bigger examples in MTran to emphasize the usefulness
of the expressiveness of MSO in XML. Section 3 introduces the
syntax and semantics of our MTran language, first describing the
query part of MTran and then the whole transformation language.
Section 4 gives a brief overview of our evaluation strategy. Sec-
tion 5 shows the results of our preliminary performance evaluation
of MTran. Section 6 suggests possible directions for future work.

2. Examples
In this section, we show two examples that expose the expressive-
ness of MTran language. To save space, we postpone other two ex-
amples showing the usefulness of second-order variables in XML
to Appendix B.

2.1 XHTML Table of Contents

The example shown in Figure 2 is a template to add a table of con-
tents to a given input XHTML document. It retrieves the heading
elements from the input document, constructs a tree of itemized
lists that reflect the hierarchical structure of the input, and prepends
it to the original document. Note that the original document con-
tains the flat structure ofh2, h3, h4, andh5 and we turn this im-
plicit hierarchy to an explicit one using nestedul itemizations. For
example, the template transforms the input

<html><head><title>Title</title></head><body>
<h1>Title</h1>
<h2>Chapter 1</h2>
<h3>Section 1.1</h3> <p>The quick</p>
<h4>Section 1.1.1</h4> <p>brown fox</p>
<h3>Section 1.2</h3> <p>jumps over</p>
<h2>Chapter2</h2> <p>the lazy</p>
<h3>Section 2.1</h3> <p>dog.</p>

</body></head>

to the following XHTML document:

<html><head><title>Title</title></head><body>
<h1>Index</h1>
<ul><li>Chapter 1 <ul>

<li>Section 1.1 <ul>
<li>Section 1.1.1 <ul/></li>

</ul></li>
<li>Section 1.2 <ul/></li>

</ul></li>
<li>Chapter 2 <ul>

<li>Section 2.1 <ul/></li>
</ul></li> </ul>

(... the same content as the input follows ...)
</body></head>

The template begins with the macrosubheading(a,b,B,A)
intuitively meaning the following:

“The nodeb belongs to the setB, and it appears after the
nodea and before any nodesx in the setA placed aftera in
the document order (<)”

For example, we use this macro as a querysubheading(h2,h3,
<h3>,<h2>) to collect all nodesh3 that are labeled<h3> and ap-
pears between the current nodeh2 and the next node labeled<h2>
if such<h2> exists, or otherwise all<h3> nodes that appear after
the currenth2. (Here,<h2> and<h3> are constants respectively de-
noting the sets of nodes labeled<h2> and<h3>.) In other words, it
gathers all sections (<h3>) in the current chapter (<h2>). Although
each sub-relation—“a node is labeledB”, “a node appears after an-
other node in document order”, and so on—is standard in usual
XML query languages, their combination as in thesubheading
predicate is not commonly expressible; in particular, XPath is in-
capable of this since, essentially, XPath cannot express universal
quantification.

Then, the main template expression has the following structure.
Let us first focus on the subexpression treatingh3 elements:

ul[ {gather h3 :: subheading(h2,h3,<h3>,<h2>) ::
li[ {gather t :: h3/t :: t}

...
]} ]

By the querysubheading(h2,h3,<h3>,<h2>), we collect allh3
elements that are subheadings of already selectedh2 elements. For
each selectedh3, we generate a list item with its content to be
the copies of all child elements ({gather t::h3/t::t}) of the
h3 element. Inside each list item, we nest the result of a similar
transformation onh4 and so on, constructing the whole hierarchy.

2.2 MathML Conversion

The second example is to convert a MathML [24] document to an-
other. MathML is a standard XML format to markup mathemat-
ical expressions, whose elements fall into two categories, namely,
content-markupelements for representing syntactic structure of ex-
pressions andpresentation-markupelements for encoding their vi-
sual rendering. For example, a mathematical expression(2 + 3)×
(4 + (5 + 6)) is written in content markup as follows:

<apply>
<times/>
<cn>1</cn>
<apply> <plus/> <cn>2</cn> <cn>3</cn> </apply>
<apply> <plus/>

<cn>4</cn>
<apply> <plus/> <cn>5</cn> <cn>6</cn> </apply>

</apply>
</apply>
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pred follows( var1 x, var1 y ) =
ex1 p: (p/x & p/y & x<y);

pred need_paren( var1 ap ) =
ap/<plus>
& ex1 op: (follows(op,ap) & op in <times>);

mrow[ {visit x
:: x in <ci> ::

mi[ {gather y :: x/y :: y} ]
:: x in <cn> ::

mn[ {gather y :: x/y :: y} ]
:: x in <apply> & need_paren(x) ::

mo["("] {gather y::firstChild(x,y)::y} mo[")"]
:: x in <apply> ::
{gather y :: firstChild(x,y) :: y}

:: x in <plus> ::
{gather y :: nextSibling(x,y) ::

y {gather z :: follows(y,z) :: mo["+"] z}
:: x in <times> ::
{gather y :: nextSibling(x,y) ::

y {gather z :: follows(y,z) :: mo["*"] z}
}]

Figure 3. Example: MathML Conversion

The MTran program shown in Figure 3 converts a content
markup containing only<plus/> and<times/> as operators to
a presentation markup, where we minimize the number of occur-
rences of parentheses, based on the standard priority rules for op-
erators. For instance, the above XML is converted to the following
XML in presentation markup with no redundant parentheses:

<mrow>
<mo>(</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo>)</mo>
<mo>*</mo><mo>(</mo><mn>4</mn><mo>+</mo><mn>5</mn>
<mo>+</mo><mn>6</mn><mo>)</mo>

</mrow>

Two macro predicates are defined. The first onefollows(x,y)
means that the nodesx and y share the same parent (p) and x
appears beforey in the document order. That is, the nodex is
one of the preceding siblings of the nodey. The second one
need_paren(ap) takes an<apply> node as the parameterap
and determines whether it is required to enclose the expression
with parentheses. The rule here is that we need parentheses only
when the operation used in theap node is<plus> and the outer
operation (op) is <times>.

The template generates a<mrow> element, in which we use
a visit expression to visit all elements in the input document,
apply the transformation with associated sub-templates, and glue
them up into the output document. When an<apply> element is
found (x in <apply>), we emit parentheses if theneed_paren
predicate returns true and then extract, by agather expression,
the first child, which is either a<plus> or a <times> node.
At a <plus> node, we construct a sequence of addition expres-
sions. In this, we first emit the first operand (which is obtained by
nextSibling(x,y)) and then each remaining operand (which is
extracted byfollows(y,z)) prepended with the operator symbol
mo["+"]. We process a<times> node in a similar way.

The example shows the power ofvisit expressions. That is, we
have only specified a local transformation on each node in the input
without involving any explicit recursive traversal. Nevertheless,
the program can perform a whole-document conversion where the
presentation markups in the output document preserve the original
structure of the content mark-ups in the input document.

<msg>

<item>

<item>@lang

@lang

"Bonjour"

"Hello""en"

"fr"

Figure 4. The binary tree representation of the example XML

3. Language
3.1 Binary Trees and XML representation

Our formalization begins with defining binary trees. Throughout
this paper, we assume a fixed, finite alphabetΣ.

Definition 1. A binary treet over Σ is a mapping from a finite
prefix-closed setPos(t) ⊆ {l, r}∗ to Σ. We call an element
p ∈ Pos(t) a positionor a nodeof t, and the alphabet member
t(p) ∈ Σ assigned top the label of p. The empty sequence nodeε
is called theroot of t.

Our surface language needs to handle XML documents, which
are in general not binary trees but are unranked trees (trees whose
each node has an arbitrary number of child nodes). For this, we
use a well-known encoding of unranked trees by binary trees. That
is, the first child and the right neighboring sibling of each node in
the unranked tree are, respectively, encoded by the left and the right
child of the corresponding node in the binary tree. In addition, a real
XML document has three types of node—element nodes, attribute
nodes, and text nodes. For this, we first assume the alphabetΣ
to consist of element names written<e>, attribute names written
@a, and texts written"s". Then, we insert attribute nodes before
the other element or text nodes of its belonging element node. For
example, the following XML document

<msg> <item lang="en">Hello</item>
<item lang="fr">Bonjour</item> </msg>

is modeled by the binary tree in Figure 4.1 Our current implemen-
tation ignores other XML features like comments, processing in-
structions, and namespaces.

3.2 Query Expressions

This section describes MTran’s query sublanguage based on MSO.
We first present the core syntax and semantics of query expressions
and then introduce syntax sugars for convenience and reusability of
queries.

3.2.1 Core Syntax and Semantics

As we mentioned in the introduction, we adopt MSO formulae as
our query language. MSO is a kind of logic that allows second-
order variables ranging over sets of domain elements in addition to
first-order variables ranging over domain elements, where domain
elements here are tree nodes in our context. Formally, we assume a
set of first-order variables, ranged over byx, and a set of second-
order variables, ranged over byX. The BNF below defines the
core syntax for first-order termsp, second-order termsS, and MSO
formulaeϕ.

p ::= x | root
1 Although we formalize binary trees on top of the fixed alphabetΣ, actual
input XML documents may have arbitrary labels possibly not belonging to
Σ. To treat this, we always add an extra, distinguished symbolothers to
Σ, and rename any label in input trees not belonging toΣ as anothers.
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S ::= X | σ | <*> | @* | #
ϕ ::= p = p | S = S | p in S | ~ϕ | ϕ&ϕ | ϕ|ϕ | ϕ=>ϕ

| ex1 x:ϕ | all1 x:ϕ | ex2 X:ϕ | all2 X:ϕ

| firstChild(p,p) | nextSibling(p,p)
Let us informally explain the semantics of MSO. An MSO

formula ϕ is interpreted in terms of a binary treet over Σ, a
first-order assignmentγ (mapping each first-order variable to an
element ofPos(t)), and a second-order assignmentΓ (mapping
each second-order variable to a subset ofPos(t)). A first-order
term denotes a node in the treet. In particular, the constantroot
denotes the root nodeε of t. A second-order term denotes a set
of nodes. Each symbolσ ∈ Σ works as a constant denoting the
set of nodes labeled withσ. The other three kinds of second-order
constant terms<*>, @*, and# are calledwild-card terms denoting
the set of any element nodes, the set of any attribute nodes, and the
set of any text nodes, respectively.

The formulaep = p (and S = S) means that the terms on
both side denote the same node (and the same set of nodes, respec-
tively). The formulaep in S means that the node denoted byp
belongs to the set denoted byS. The operators~, &, and| are the
standard logical operators for negation, conjunction, and disjunc-
tion. The constructsex1 andall1 are quantification over first-over
variables. Similarly,ex2 andall2 are quantification over second-
over variables. The last two constructs ofϕ are the primitive pred-
icates to relate tree nodes. That is,firstChild(p,q) holds if and
only if q is the first child of nodep. Similarly,nextSibling(p,q)
holds if and only ifq is the next sibling of nodep. These two prim-
itives correspond to the edge relations in the binary tree encoding
in Section 3.1.

Formally, the semantics of terms and formulae is defined as
follows:

Definition 2. Let t be a binary tree overΣ. Under a first-order
assignmentγ, first-order terms are interpreted as follows:

γ[x] = γ(x)

γ[root] = ε

Also, under a second-order assignmentΓ, second-order terms are
interpreted as follows:

Γ[X] = Γ(X)

Γ[σ] = {p | t(p) = σ}
Γ[<*>] = {p | <e> ∈ Σ, t(p) = <e>}
Γ[@*] = {p | @a ∈ Σ, t(p) = @a}
Γ[#] = {p | "s" ∈ Σ, t(p) = "s"}

Definition 3. An MSO formulaϕ is interpreted under a binary tree
t overΣ, a first-order assignmentγ, and a second-order assignment
Γ, as follows:

t, γ, Γ › p1=p2 ⇐⇒ γ[p1] = γ[p2]

t, γ, Γ › S1=S2 ⇐⇒ Γ[S1] = Γ[S2]

t, γ, Γ › p in S ⇐⇒ γ[p] ∈ Γ[S]

t, γ, Γ › ~ϕ ⇐⇒ t, γ, Γ 6› ϕ

t, γ, Γ › ϕ1&ϕ2 ⇐⇒ t, γ, Γ › ϕ1 andt, γ, Γ › ϕ2

t, γ, Γ › ϕ1|ϕ2 ⇐⇒ t, γ, Γ › ϕ1 or t, γ, Γ › ϕ2

t, γ, Γ › ex1 x:ϕ ⇐⇒ for somea ∈ Pos(t) t, γx:=a, Γ › ϕ

t, γ, Γ › all1 x:ϕ ⇐⇒ for all a ∈ Pos(t) t, γx:=a, Γ › ϕ

t, γ, Γ › ex2 X:ϕ ⇐⇒ for someA ∈ 2Pos(t) t, γ, ΓX:=A › ϕ

t, γ, Γ › all2 X:ϕ ⇐⇒ for all A ∈ 2Pos(t) t, γ, ΓX:=A › ϕ

pred p_cs( var1 p, var2 C ) =
all1 c: (c in C <=> (firstChild(p,c)

| ex1 b: (b in C & nextSibling(b,C))));

pred p_c( var1 p, var1 c ) =
ex2 C: (p_cs(p,C) & c in C);

pred a_ds( var1 a, var2 D ) =
all1 d: (d in D <=>

p_c(a,d) | ex1 b: (b in D & p_c(b,d)));

pred a_d( var1 p, var1 d ) =
ex2 D: (a_ds(a,D) & d in D);

Figure 5. Unranked view in binary MSO

t, γ, Γ › firstChild(p1,p2) ⇐⇒ γ[p1].l = γ[p2]

t, γ, Γ › nextSibling(p1,p2)⇐⇒ γ[p1].r = γ[p2]

Here,γx:=a is an assignment that is identical toγ except that it
maps the variablex to a; similarly for ΓX:=A. The dot operator.
used in the definition offirstChild andnextSibling denotes
the concatenation of sequences from{l,r}∗.
3.2.2 Auxiliary Syntax

Macro Expressions Programmers can define their own macros
for frequently used formulae. Assuming a set of macro namesm,
the syntax for macro definitions is as follows:

V ::= var1 x | var2 X

MacroDef ::= pred m(V , · · · ,V ) = ϕ;

where eachV is either a first-order or a second-order variable
declaration. We also augment the syntax for formulae as follows.

T ::= p | S
ϕ ::= . . . |m(T, · · · ,T)

A macro call formm(T1, · · · , Tn) is expanded to its definition
whose parameter variables are replaced with the supplied ar-
guments. Macros are useful not only for concise description of
queries, but also for efficient static processing by separate compi-
lation. Note that macro definitions themselves cannot be recursive.

Path Expressions Our core syntax has only two primitive rela-
tions on tree nodes,firstChild andnextSibling. This reflects
our encoding of XML into binary trees described in Section 3.1.
Although, in principle, these two primitives would have sufficient
expressiveness, it is much more convenient to have more compact
notations based on theunrankedview of the input XML tree. For
this reason, we introduce an XPath-like syntax sugar.

D ::= / | //
U ::= x | S | p:S
ϕ ::= . . . | UDUD · · ·DU | /UD · · ·DU

Here,D stands forpath delimitersandU stands forpath units. The
expressionp/q (andp//q) means that the node denoted byp is
the parent (and an ancestor, respectively) of the node denoted byq
in the original unranked tree. Since the unranked parent-child rela-
tion and the ancestor-descendant relation are indeed expressible in
MSO, our implementation internally converts those syntax-sugars
to equivalent plain MSO formulae. Namely, the expressionp/q is
converted top_c(p,q) and the expressionp//q is converted to
a_d(p,q), where the macrosp_c anda_d are defined as in Fig-
ure 5.

54



pred doc_next( var1 p, var1 q ) =
firstChild(p,q) | nextSibling(p,q)
| ex1 r: (r//p & nextSibling(r,q));

pred doc_orders( var1 p, var2 Q ) =
all1 q: (q in Q <=> (doc_next(p,q)

| ex1 b: (b in Q & doc_next(b,q)));

pred doc_order( var1 p, var1 q ) =
ex2 Q: doc_orders(p,Q) & q in Q;

Figure 6. Document Orders

When a second-order term is postfixed to a path expression,
it has an existential meaning. For example,p/<a> is a short-
hand forex1 x: p/x & x in <a>. When a pairp:S of a first-
and a second-order terms is postfixed to a path expression, it
simultaneously declares thatp in S and that the termp sat-
isfies the present path expression. For instance, the expression
x:<a>/y is equivalent tox in <a> & x/y. When three or more
units are connected by path delimiters, the expression has a con-
junctive meaning. For example,x/y/z stands forx/y & y/z. A
delimiter-prefixed expression/U1D1 . . . DnUn represents anab-
solute pathfrom the root node. The expression is interpreted as
(root=U1) & U1D1 . . . DnUn when U1 is a first-order term,
and interpreted as(root in U1) &U1D2 . . . DnUn whenU1 is a
second-order term.

Document Order Relations Another frequently used primitive is
the pre-order relation (often calleddocument orderrelation) among
tree nodes. This relation is also MSO-expressible (doc_order
macro in Figure 6) and provided as a short-hand syntax as follows:

ϕ ::= . . . | p < p

3.3 Transformation Templates

This section defines the MTran language itself, which embeds our
MSO-based query sublanguage given in the last section.

3.3.1 Overview

The most important constructs in MTran aregather andvisit
expressions. Agather expressiongathersall nodes in the input
tree that satisfy the specified MSO query expression. For example,
the template

{gather x :: x in <B> :: x}
with the input

<A> <B><C>ddd</C></B>
<C><B>eee</B></C>
<B><C><B>fff</B></C></B> </A>

is evaluated to the list of nodes:

<B><C>ddd</C></B>
<B>eee</B>
<B><C><B>fff</B></C></B>
<B>fff</B>

Note that we have gathered all nodes that match the query regard-
less of their inclusion relations. When we want to obtain only the
outermost nodes, we need to explicitly specify so like

{gather x :: x in <B>
& ~ex1 y:(y//x & y in <B>) :: x}

or more simply:

{gather x :: x in <B> & ~<B>//x :: x}

This query states “x is labeledB and none of the ancestors ofx is
labeledB,” and therefore only the outermostB nodes are gathered.
A query to retrieve only the innermost nodes can also be written
similarly.

A visit expression, on the other hand,visits every node that
satisfies the associated query formulae and appears in the subtree
specified by thefrom clause (or in the whole input tree if the
from clause is not supplied). Each node that is matched by one
of the queries is transformed according to the corresponding tem-
plate, and the other unmatched nodes are left unchanged. This is
roughly the semantics of ourvisit expressions. However, there
are subtle behaviors in the detail. When we evaluate eachvisit
expression, we actually distinguish four kinds of nodes that are en-
countered during the traversal—matched nodes, unmatched nodes,
newly generated nodes, and already-processed nodes—and take a
different action for each. To illustrate this, let us consider the fol-
lowing template for enclosing eachB node in aMark tag:

{visit x :: x in <B> :: Mark[x]}
This template transforms the input document

<A>
<C><B>eee</B></C>
<B><C><B>fff</B></C></B>

</A>

to the result:

<A>
<C><Mark><B>eee</B></Mark></C>
<Mark><B><C><Mark><B>fff</B></Mark></C></B></Mark>

</A>

EachA or C node is unmatched, for which we simply skip and
proceed to its child nodes. Then, eachB node is matched, for
which we evaluate the subtemplateMark[x] with x bound to the
node itself, andthen traverse again the generated tree. During
the traversal, we will encounter theB node that has already been
processed as well as the newly generatedMark node; we simply
skip both of them. In the same traversal, we will also encounter
anotherB node that has not yet been seen, for which we apply the
subtemplateMark[x] in the same way as above.

To justify the above design choices, the reason for skipping un-
matched nodes is clear: we can release the programmer from ex-
plicitly writing recursion for searching and transforming deeply
located nodes. The reason for retraversing generated trees is that,
otherwise, we cannot transform matched nodes that appear in-
side another matched node, unless we explicitly write a recursive
application—that is, this design is again for our intention to avoid
any recursion. Finally, skipping already-processed nodes and newly
generated nodes is for simplifying the language design. In partic-
ular, this can make the MTran languageterminating and trans-
formable in one pass. In Appendix A, we prove that the evaluation
of transformation templates always terminates.

3.3.2 Syntax and Semantics

We formally define the syntax and semantics of the language in
the rest of this section. A whole program consists of a list of user-
defined macros and a (template) expression, whereexpressionsE
andexpression listsEL are defined by the following syntax.

EL ::= E∗

E ::= x | σ[EL] | {gather x :: ϕ :: EL}
| {visit x from y (:: ϕ :: EL)∗}

The phrase “from y” can be omitted from avisit expression
when y is root. Also, when theσ in an expressionσ[· · · ] is
an element label<e>, the angle brackets can be omitted, i.e., the
expression can be written ase[· · · ].
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Internal form MTran internally handles three different forms of
XML representation. The first is the normal textual representation
as defined in the XML standard [6]. The second is the binary
encoding of XML trees described in Section 3.1, which is used in
our query algorithm to represent input trees. The last is theinternal
form, which is suitable for handling the above-mentioned subtle
behavior of our transformation templates. Internal treesI (trees in
the internal form) are defined as follows wherep ∈ {0, 1}∗ ∪{⊥}:

I ::= (σ[I∗], p)

The first component of an internal treeI represents a node in the
unranked tree structure, whereσ is its label andI∗ is its chil-
dren. (Note that this definition may yield an invalid XML, such
as repeated attributeselem[@x[...]@x[...]] or non-text nodes
inside attributes@x[elem[...]]. Such ill-formed XMLs are de-
tected at runtime and result in an error.) The second componentp
maintains the position where the node inhabited in the input tree.
In the case of a node that is not from the input tree (i.e. newly con-
structed by a template),⊥ is assigned. We use this positional in-
formation only for the evaluation ofvisit expressions, which has
to distinguish newly generated nodes from nodes derived from the
input tree. In the final output as an XML document, the positional
information is dropped.

The conversion functionitl from a pair of a binary treet and its
nodep into the internal form is defined as follows

itl(t, p) = (t(p)[itl(t, p0), . . . , itl(t, pk)], p)

wherepi = p.l

iz }| {
r · · · r (the dot. denotes concatenation) andk is

the maximum number such thatpk ∈ Pos(t).

Interpretation An expression or an expression list is interpreted
under an input binary treet and a first-order variable assignment
γ, and denotes a list of internal trees. Concretely, an expression
list E1 · · ·Ek denotes the concatenation of the interpretations of
E1, E2, · · · , andEk:

JE1 . . . EkK(t, γ) = concat [ JE1K(t, γ) · · · JEkK(t, γ) ]

Here, the notation[. . . ] represents a list andconcat is the concate-
nation of all the given lists. The interpretation of each expression is
as follows:

JxK(t, γ) = [ itl(t, γ(x)) ]

Jσ[EL]K(t, γ) = [ (σ[JELK(t, γ)],⊥) ]

J{gather x::ϕ::EL}K(t, γ) =

concat [ JELK(t, γx:=p)
˛̨
p ∈ Pos(t), γx:=p › ϕ ]

J{visit x from y::ϕ1::EL1:: . . . ::ϕk::ELk}K(t, γ)

= vis(Pos(t), itl(t, γ(y)))

where

vis(V, (σ[IL], p)) =8
>>>>><
>>>>>:

concat [vis(V \{p}, I)| I ∈ JEL1K(t, γx:=p)]
if p ∈ V andt, γx:=p › ϕ1...

concat [vis(V \{p}, I)| I ∈ JELkK(t, γx:=p)]
if p ∈ V andt, γx:=p › ϕk

[(σ[concat [vis(V, I)| I ∈ IL]], p)] otherwise

In general, more than one case in the definition ofvis may be
applicable at a time. In that case, the first one is chosen.

The notation[f(x) | x ∈ List (, a condition onx)] is a list com-
prehension. First, the elements in theList that fail to satisfy the
condition are filtered out. Then the functionf is applied to each re-
maining element and the result list[f(xi1) · · · f(xin)] is yielded.
The setPos(t) in gather’s semantics is treated as a list of elements
ordered by the document order. All MSO queries ingather and

visit expressions are evaluated under an empty second-order vari-
able assignment (therefore omitted in the above definitions) since
we only bind first-order variables in transformation templates.

The vis function takes two parameters. The first parameterV
denotes the set of input nodes that arenot yet processed in the
current evaluation of thevisit expression. The second parameter
(n, p) denotes the node currently visited. If the node is matched by
one of the query formulae and has not yet been processed, then the
node is replaced by the list of nodes generated from the associated
template. Then, again we recursively visit these generated nodes,
recording the current node to be already processed. If the node is
matched by no query formula, has already been processed, or has
newly been generated, then we just recursively go down in the tree.

4. Evaluation Algorithm
This section briefly overviews our evaluation strategy for MTran.
We first explain our MSO evaluation consisting of (1) compilation
of MSO formulae to tree automata and (2) evaluation ofn-ary
queries represented by those tree automata. We then sketch how
to integrate the query algorithm into our evaluation strategy for the
whole language. For lack of space, we only sketch the algorithms,
omitting a detailed presentation.

4.1 From MSO to Tree Automata

First of all, we formalize the notion of queries.

Definition 4. An n-ary query for binary tree overΣ is a functionq
that maps each treet to a set ofn-tuples of its positions.

A tree language overΣ is a set of trees. A query can also be
defined in terms of tree languages.

Definition 5. Let B = {0, 1}. An n-ary query defined by a tree
languageL overΣ× Bn is a functionq such that

q(t) = {(v1, . . . , vn) ∈ Pos(t)n |
∃β1, . . . , βn : Pos(t) → B
∀i.∀v ∈ Pos(t).(βi(v) = 1 ⇐⇒ v = vi)

& t× β1 × · · · × βn ∈ L}
where the productt × s of trees is the function defined as(t ×
s)(v) = (t(v), s(v)).

Intuitively, eachβi in the definition above represents selection
marks corresponding to thei-th members of tuples. That is, a query
defined by a languageL selects a tuple(v1, . . . , vn) on a treet if
and only ifL contains a tree where eachβi marks the elementvi as
1 and the other elements as0. Note that we only consider selection
marks that select exactly one nodevi in an input tree. In general, a
tree language overΣ × Bn may contain a tree whereβi marks no
node or more than one node. But such a language defines exactly
the same query as the language with all ill-marked trees removed.

An important class of tree languages and queries is defined in
terms of tree automata.

Definition 6. A bottom-up deterministic tree automaton overΣ is a
tuple(Σ, Q, δ, q0, F ) whereQ is a set of states,δ : Q×Q×Σ → Q
is a transition function,q0 ∈ Q is an initial state, andF ⊆ Q is a
set of accepting states.

Definition 7. A run of a bottom-up deterministic tree automaton
on a binary treet is a mappingρ : Pos(t) → Q such that
ρ(v) = δ(ρ(v.l), ρ(v.r), t(v)) for each nodev ∈ Pos(t). When
v.l or v.r does not belong to the domainPos(t), we useq0 instead
of ρ(v.l) or ρ(v.r). The runρ is calledacceptingif ρ(ε) ∈ F .
Note that a run is uniquely determined from any treet. A tree is
acceptingwhen there is an accepting run on it.
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Each tree automaton defines the tree language consisting of
all trees accepted by the automaton. Thus, we can regard a tree
automaton overΣ× Bn as ann-ary query overΣ.

Definition 8. An n-ary query overΣ is regular if there exists a
bottom-up deterministic tree automaton that defines the query.

An MSO formula withn free first-order variables can naturally
be seen as ann-ary query. A formulaϕ(~x) whose free variables
are~x = (x1, . . . , xn) defines a queryq(t) = {~v ∈ Pos(t)n | t ›
ϕ(~v)}. It is well-known that there is an exact correspondence
between MSO and tree automata.

Theorem 1. [31] For every MSO formulaϕ(~x) with n free vari-
ables, there exists a bottom-up deterministic tree automatonA over
Σ × Bn that defines the equivalent query. Also for every bottom-
up deterministic tree automatonA over Σ × Bn, there exists an
equivalent MSO formula withn free variables.

This equivalence allows us to compile a given MSO formula
to an equivalent automaton as the first step of MSO query evalu-
ation. As mentioned in the introduction, although this compilation
step is known to take a non-elementary time in the worst case, we
can overcome this difficulty simply by employing the MONA sys-
tem [17]. Section 5 shows our experimental results supporting our
claim.

4.2 N -ary Query Algorithm

Definition 5 yields a naive evaluation algorithm forn-ary queries
represented by tree automata. That is, for everyn-tuple of nodes
of a given input treet, generate the corresponding selection mark
βi’s as in the definition and calculate the bottom-up run of the
automaton. If the run is accepting, the tuple belongs to the result
set of the query. There can be|t|n n-tuples where|t| is the size of
the input tree, and each run of a tree automaton takesO(|t|) time.
So the total time complexity of this naive algorithm isO(|t|n+1).

Actually, this high time complexity can be improved if we
reduce the set of selection marks to be tested by doing a pre-
calculation that determines the exact set of states relevant to accept-
ing runs. Flum, Frick, and Grohe [12] have shown an algorithm for
evaluating ann-ary MSO query locatingn-tuples of sets of nodes
that runs inO(|t| + |s|) time, where|s| is the size of the output.
They use a three-pass algorithm to achieve the linearity. The first
bottom-up pass calculates, for each node of the input tree, the set of
states where a bottom-up run of the automaton reaches for some se-
lection marks. The second top-down pass determines another set of
states for each node, namely, the states that may lead to an accept-
ing state at the root node. Finally, the last bottom-up pass collects
the result of the query. In the last pass, all selection marks relevant
to accepting runs are simultaneously tested in a single traversal of
the input tree, by using operations on sets of selection marks. Here,
it is crucial to have efficientunion andproductoperations on the
set data structures for ensuring the linear time complexity. For this,
they have exploited a linked list with an additional pointer to the
last element, which enables constant-time concatenation, for repre-
senting sets with efficient operations.

Our algorithm is based on this linear-time algorithm. However,
since we only need to queryn-tuples ofnodesin MTran, as oppose
to sets of nodesin their case, we can specialize the algorithm so
as to use a more concise representation. Our approach is, instead
of pre-calculating relevant states, to directly execute the third col-
lection phase in conjunction with ourpartially lazy evaluationof
set operations. In this, we basically delay set operations like unions
and products until actually enumerating the final result, except that
we eagerly compute those operations when one of the operands is
an empty set. This technique achieves the same time complexity
as Flum-Frick-Grohe algorithm. Roughly speaking, the delaying of

Compile 10KB 100KB 1MB
TableOfContents 0.970 0.038 0.320 3.798

MathML 0.703 0.236 1.574 16.512
Linguistic 0.655 0.063 0.429 4.050
RelaxNG 0.553 0.068 0.540 5.684

Table 2. Compilation and Execution Time (sec)

the operations corresponds to the second pass, which confines the
calculation of concreten-tuples to the runs that may reach accept-
ing states. Also, the eager computation for empty sets corresponds
to the first pass, which eliminates the calculation for the runs that
never happen for any selection marks.

4.3 Transformation Template Evaluation

How we can evaluategather or visit expressions themselves
is clear from the definition of semantics. The issue is, how to
integrate the query algorithm introduced in Section 4.2 into the
evaluation strategy for whole transformation templates. A naive
implementation of the semantics in Section 3.3.2 will evaluate
each query as a unary query, by fixing the binding of the free
variables other than the one to be queried. However, as we already
discussed in Section 1.3, we do not take this strategy. Instead,
we evaluate each query expression as ann-ary query (wheren
is the number of its free variables)once and for all. We have
further developed a novel optimization technique forn-ary queries
exploiting the context information (i.e., the sets of nodes bound in
outer templates). The details are omitted from this abstract.

5. Preliminary Performance Evaluation
We show results from our experiments using four examples (two
from Section 2 and two from Appendix B). All benchmarks are
run on Windows XP SP2 operating system on a 1.6GHz AMD
Turion processor with 1GB RAM, using MONA 1.4 as a backend
compiler of MSO formulae. We have implemented our system in
C++ programming language and compiled in GNU C++ Compiler.
We have measured the execution time using thetime command,
and have taken the average of 10 runs.

Our implementation strategy of transformation templates con-
sists of two steps: (1) compilation of MSO formulae to tree au-
tomata using MONA system (Section 4.1) and (2) query evaluation
and transformation with the compiled tree automaton (Sections 4.2
and 4.3). We experiment on each step separately, whose result is
shown in Table 2. The second column shows the total time spent
for compiling all query expressions in each program. Although this
step takes hyper-exponential time in the worst case, the experiment
shows that, at least for these three examples of XML queries, our
strategy yields enough performance. We have then measured the
performance of our evaluation algorithm using randomly gener-
ated XML documents of different sizes as inputs. The results con-
firm that most transformations are executed in reasonably practical
time even for relatively large inputs. However, the MathML exam-
ple spends longer time compared to the other examples. The rea-
son seems the following. Recall that our query algorithm runs in
O(|t| + |s|) time, where|s| is the size of the query result. The
MathML program selects every node in the input for a whole doc-
ument transformation, which makes|s| quite large.

To demonstrate the efficiency of our template evaluation strat-
egy (Section 4.3), we compare the performances of MTran and tra-
ditional XSLT processors (XT [21] and Xalan-C [32]). For bench-
mark, we wrote, both in MTran and XSLT, a transformation that
appends, to the content of eachh2 element, the content of its pre-
cedingh1 element. Figure 7 shows the execution times for the in-
puts varying the number ofh2 elements from 1000 to 9000. As we
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Figure 7. Evaluation Time

explained in Section 4.3, MTran processes the query to select “the
h1 element preceding the currenth2 element” as a binary query,
which enables a linear time transformation. On the other hand, XT
and Xalan-C evaluate the above query as a unary query and repeat
it on eachh2 node, which incur quadratic blow-up as can be seen
in the figure.

6. Future Work
The major direction for future work is an addition of static type-
checking. For verifying the correctness of XML transformations,
many researches [23, 16, 30, 19] have been done in the area of
typechecking for regular tree languages. It is an interesting ques-
tion how those results are applicable to MTran, in particular, to our
non-standard semantics ofvisit expressions.

Static type information is useful not only for verification,
but also for query optimizations. The MONA system, which we
adopted as a backend of MTran language, exploits a kind of au-
tomata optimization based on static information throughguided
tree automata[4]. We could think of a further improvement of the
current evaluation algorithm, using such optimized automata.
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A. Termination
This section gives a formal proof of termination of a transforma-
tion. The following is a key lemma.

Lemma 1. In each step of recursion in the vis function, the pair
(V, I) of arguments always strictly decreases in its lexicographical
order, whereV is ordered by set-inclusion andI is ordered by the
descendant-ancestor order of internal trees.

Proof. Case analysis based on the definition ofvis function. When
any one of theϕj query expression is satisfied, the recursive appli-
cation ofvis is done with the first argumentV \ {p}, which strictly
decreases the order. When none of theϕj is satisfied, the recursive
application ofvis is done with the first argumentV unchanged and
the second argument being each element ofIL, which is the sub-
part of I. Thus in the arguments(V, I) strictly decreases also in
this case.

Using this, we can prove the termination of any transformation
templates.

Prop 1. Evaluation ofE andEL always terminates.

Proof. By simultaneous induction on the structure ofE andEL.
ForEL, since evaluation of eachEi terminates by the induction hy-
pothesis, evaluation of the whole expression also terminates. ForE,
we need to prove six cases. The case of variable expressionsx re-
solves to the termination ofconv function, which is clear from the
definition of the function. The case of"s" expression is trivial. The
cases ofe[EL], @a[EL], andgather expressions are easily derived
from the induction hypothesis. For the case ofvisit expressions,
we prove the termination of thevis function, since the semantics of
a visit expression is actually a evaluation ofvis function. Since
both set-inclusion for finite sets and descendant-ancestor ordering
are well-founded relations, by Lemma 1,vis function is guaran-
teed to do well-founded recursion, which terminates in finite steps.
Each step of the recursion also terminates since it just evaluates
MSO queries (whose deterministic terminating algorithm is given
in the next chapter), evaluates subexpression listELi (that is as-
sured to terminated by the assumption), and concatenates several
lists. Combining these results yields the termination of the whole
vis function.

B. Further Examples
B.1 Linguistic Queries

This application is taken from a motivating example of LPath
language developed by Bird, Chen, Davidson, Lee, and Zheng [5].
LPath is an extension to XPath that supportslinguistic queries. In
the field of linguistics, parsed sentences are commonly represented
as labeled trees. An example of such tree looks like:

<S>
<NP>I</NP>
<VP>

<V>saw</V>
<NP>
<NP>

<Det>the</Det><Adj>old</Adj><N>man</N>
</NP>
<PP>

<Prep>with</Prep>
<NP><Det>a</Det><N>dog</N></NP>

</PP>
</NP>

</VP>
<N>today</N>
</S>

The authors of LPath argued that there are mainly three require-
ments for linguistic queries: “subtree scoping” that restricts the
scope of queries in a specified subtree, “edge alignment” condition
to state whether a node is leftmost (or rightmost) within a particular
subtree, and “immediately follow” relationship. A nodeq is said to
immediately followp whenp appears immediately afterq in some
proper analysis [13], where a proper analysis is a sequence obtained
by several reverse applications of given grammar productions to a
given sentence, e.g.,NP saw NP today is an example of proper
analysis for the sentence “I saw the old man with a dog today.”

LPath extends XPath to support the three features above, and
enables us to write many queries that are not expressible in XPath.
The authors give the following as test cases:

Q1 Find noun phrases that immediately follow a verb.

Q2 Within a given verb phrase, find nouns that follow a verb which
is a child of the verb phrase.

Q3 Find all verb phrases that are comprised of a verb, a noun
phrase, and a prepositional phrase.

All these queries are already expressible in our MSO queries
without any extensions as shown in Figure 8. In LPath imple-
mentation, “immediately follow” relation was defined algorithmi-
cally and its equivalence to the definition based on proper analyses
needed to be proved. Using second-order variables, we can define
the relation directly in terms of the concept of proper analyses. First
we prepare a macro to assert that a setA is a proper analysis.

pred proper(var2 A) =
all1 x: (x in A <=> ~(A//x | x//A));

That is, a proper analysisA is a set of positions such that for any
nodex, if x belongs toA then all ancestors and descendants ofx do
not belong toA, and otherwise there exists an element ofx being an
ancestor or a descendant ofx. Using this macro, the “p immediately
follows q” relation can be expressed directly through the definition
“in some proper analysisp appears immediately afterq.”

pred imm_follow(var1 x, var1 y) =
ex2 A: (proper(A) & x in A & y in A & x<y

&~ex1 z:(z in A & x<z & z<y));
pred follow(var1 x, var1 y) =

ex2 A: (proper(A) & x in A & y in A & x<y);

Theimm follow relation can be directly read as “in some proper
analysisA that contains bothx and y, there exists noz appear-
ing betweenx and y (i.e., y appears just afterx.”) By virtue
of the existence of second-order variables, the condition like
“in some proper analysis” is naturally representable asex2 A:
(proper analysis(A) ...) in MSO.

B.2 Relax NG Simplification

RELAX NG specification [10] defines several simplification rules
for transforming a RELAX NG schema into a simpler syntax. Al-
though many of the transformations are easily realizable in tradi-
tional XML transformation languages, some of them require a more
sophisticated approach. We take up their “empty element” rule as
an example. Theempty element in RELAX NG means an empty
sequence of nodes. Here is an excerpt from their specification:

In this rule, the grammar is transformed so that anempty el-
ement does not occur as a child of agroup, interleave, or
oneOrMore element or as the second child of achoice el-
ement. Agroup, interleave or choice element that has
two empty child elements is transformed into anempty ele-
ment. Agroup or interleave element that has oneempty
child element is transformed into its other child element. A
choice element whose second child element is anempty
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pred leftmost(var1 x) = ~ex1 y: nextSibling(y,x);
pred rightmost(var1 x) = ~ex1 y: nextSibling(x,y);

pred lmd(var1 a, var1 d) =
a//d & all1 x:(a//x//d | x=d => leftmost(x));

pred rmd(var1 a, var1 d) =
a//d & all1 x:(a//x//d | x=d => rightmost(x));

pred comp(var1 c, var1 y1, var1 y2, var1 y3) =
lmd(c,y1) & imm_follow(y1,y2) & imm_follow(y2,y3)

& rmd(c,y3);

pred Q1(x) =
ex1 v:(v in <V> & imm_follow(v,x) & x in <NP>);

pred Q2(x) =
ex1 vp: ex1 v:

(vp:<VP>/v:<V> & follow(v,x) & vp//x:<N>);

pred Q3(x) =
ex1 v: ex1 np: ex1 pp:
(v in <V> & np in <NP> & pp in <PP> & _ in <VP>
& comp(_,v,np,pp));

test[
Q1[ {gather x :: Q1(x) :: x} ]
Q2[ {gather x :: Q2(x) :: x} ]
Q3[ {gather x :: Q3(x) :: x} ]

]

Figure 8. Example: Linguistic Queries

element is transformed by interchanging its two child ele-
ments. AoneOrMore element that has anempty child ele-
ment is transformed into anempty element. The preceding
transformations are applied repeatedly until none of them is
applicable any more.

Without a sufficiently expressive query language, achieving the
desired result requires us to really repeat the above transformations
many timesuntil none of them is applicable any more. By using
MSO’s ability to capture all regular queries, we can write the
condition whether a node should finally be converted to anempty
element, as follows:

pred convertible_to_empty(var2 E) =
all1 x: (x in E <=>

x in <empty>
| x in <group> & all1 y: (x/y => y in E)
| x in <interleave> & all1 y: (x/y => y in E)
| x in <choice> & all1 y: (x/y => y in E)
| x in <oneOrMore> & all1 y: (x/y => y in E);

pred emp(var1 x) =
ex2 E: (convertible_to_empty(E) & x in E);

Using the predicate, theempty element simplification can be ex-
ecuted as a one-pass transformation, which is more efficient than
repeated transformations. Figure 9 shows a template implementing
it. We assume that the input is a valid RELAX NG schema, and
that eachgroup or interleave node has exactly two children. If
a nodex is convertible toempty, then we output anempty node.
Otherwise, ifx is agroup or interleave element with anempty
child, we translate the node to the other child that is non-empty.
If the nodex is achoice node, then we bring theempty child in
the beginning, as stated in the simplification rule. Any other node
is kept unchanged (which is ensured by the semantics ofvisit).

{visit x
:: emp(x) ::

empty[]
:: (x in <group> | x in <interleave>)
& ex1 y:(x/y & emp(y)) ::
{gather y :: x/y & ~emp(y) :: y}

:: x in <choice> ::
choice[ {gather y :: x/y & emp(y) :: y}

{gather y :: x/y & ~emp(y) :: y} ] }

Figure 9. empty element simplification

The example above shows the advantage ofno-recursionof both
MSO and our semantics ofvisit expressions. Regular expressive-
ness of MSO enables us to check whether a node is convertible
to empty by a single queryemp(x), without writing any explicit
recursive tree traversals. The semantics ofvisit expressions elim-
inates the necessity to explicitly write down a recursive applica-
tion of the transformation in the template forgroup, interleave,
andchoice elements. Without our implicit recursion semantics,
we would have to specify that we need to recursively transform
gathered elementsy.
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