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Abstract

We consider the budget allocation problem over
bipartite influence model proposed by Alon et
al. (Alon et al., 2012). This problem can be
viewed as the well-known influence maximiza-
tion problem with budget constraints.

We first show that this problem and its much
more general form fall into a general setting;
namely the monotone submodular function max-
imization over integer lattice subject to a knap-
sack constraint. Our framework includes Alon et
al.’s model, even with a competitor and with cost.
We then give a (1 — 1/e)-approximation al-
gorithm for this more general problem. Fur-
thermore, when influence probabilities are non-
increasing, we obtain a faster (1 — 1/e)-
approximation algorithm, which runs essentially
in linear time in the number of nodes. This al-
lows us to implement our algorithm up to almost
10M edges (indeed, our experiments tell us that
we can implement our algorithm up to 1 billion
edges. It would approximately take us only 500
seconds.).

1. Introduction

Domingos and Richardson (Domingos & Richardson,
2001; Richardson & Domingos, 2002) introduced viral
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marketing, which is a cost-effective marketing strategy that
promotes products by giving “free” or “discounted” items
to a selected group of highly influential individuals, in
the hope that through the word-of-mouth effects, a large
number of product adoption will occur. In the same pa-
pers, Domingos and Richardson (Domingos & Richardson,
2001; Richardson & Domingos, 2002) considered the fol-
lowing problem: Suppose we have data on a social net-
work, with estimates for the extent to which individuals
influence one another, and we would like to market a new
product that hopefully will be adopted by a large fraction
of the network. How should we choose a few “influential”
members of the network that can “trigger” a cascade of in-
fluence? This problem, called influence maximization, is to
find a small set of the most influential individuals (which
is sometimes called a seed node set) in a social network
so that their aggregated influence in the network is maxi-
mized. The seminal work by Kempe, Kleinberg and Tar-
dos (Kempe et al., 2003) provides the first systematic study
of influence maximization as a combinatorial optimization
problem. The influence maximization problem further mo-
tivated the research community to conduct extensive stud-
ies on various aspects of the influence maximization prob-
lems (e.g., (Chen et al., 2010; 2009)).

Previous work mentioned so far has only focused on the
selection of a subset of influencing seeds. But there is one
more important factor we have to consider in the context of
an algorithmic marketing approach; namely Budgets. Cer-
tainly one of the major decisions in a marketing plan deals
with the allocation of a given budget among media channels
such as TV, newspaper, and webs, in order to maximize the
impact on a set of potential customers.
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This prompts Alon et al. (Alon et al., 2012) to consider
the following influence maximization problem with bud-
get constraints (which is called a (source-node) bipartite
influence model). First, we may model as a bipartite graph
in which one side is the set of possible marketing chan-
nels, and the other is the population of customers. An
edge between a channel ¢ and a customer j indicates that
1 may influence j with some probability that depends on
the budget allocated to i. Formally, the model consists
of a bipartite graph G = (S,T; E), where S and T are
collections of source nodes and target nodes, respectively,
and £ C S x T is an edge set. Each source node s has
a capacity c¢(s) € Z. and probabilities pFJ) € [0,1] for
i = 1,...,¢(s). Each source node s will be allocated a
budget b(s) € {0,1,...,¢(s)} such that 37 _¢b(s) < B,
where B € Z denotes a fotal budget capacity. If a source
node s is allocated a budget of b(s), the node s makes b(s)
independent trials to activate each neighboring target node
t. The probability that ¢ is activated by s in the th trial is

pgi). That is, the probability that ¢ becomes active is

b(s)

1= I TIa=»0, (1)

sel(t) i=1

where I'(t) denotes the set of source nodes that is adjacent
to t. The objective of this model is to distribute the budget
among the source nodes respecting the capacities of nodes,
and to maximize the expected number of target nodes that
become active. We call this problem the budget allocation
problem over bipartite influence model.

Alon et al. (Alon et al., 2012) devised a (1 — 1/e)-
approximation algorithm for this problem. Here, for a pos-
itive number o« < 1, an a-approximation algorithm is one
returning a feasible solution whose value is at least o times
the optimal value. Their algorithm is essentially greedy
with some preprocess (i.e., enumerating all the possible al-
locations with only three source nodes). The algorithm mo-
tivates us to consider the following issues.

1. The scalability. Their algorithm adapts a greedy proce-
dure. Therefore, the time complexity is expensive, be-
cause in each iteration, the greedy procedure searches
all the nodes in the graph as a potential candidate for
the next seed node. As a result, the algorithm entails at
least quadratic number of steps in terms of the number of
nodes. In fact, not only due to this issue, but also due to
the expensive preprocess, their algorithm would not work
for more than 5K edges, say'.

. Submodularity. For a finite set S, we say that a set
function f : 25 — R is submodular if it satisfies

Indeed, as far as we are aware, nobody has implemented their
algorithm.

FX)+fY) > f(XNY)+ f(XUY)forall X, Y C S.
A set function f is monotone if f(X) < f(Y) for all
X,Y with X C Y. Submodularity often arises in ana-
lyzing influence maximization in a social network (e.g.,
(Chen et al., 2010; 2009; Kempe et al., 2003)), and guar-
antees why a greedy algorithm finds a nearly optimal so-
lution (Fisher et al., 1978). In the budget allocation prob-
lem, one may select a node multiple times, and hence
the objective function is not a set function. As suggested
by Alon et al., however, their algorithm is similar to the
one for maximizing a monotone submodular set function
subject to a knapsack constraint (Sviridenko, 2004), and
hence it seems to us that submodularity can explain the
problem setting.

. Extending the framework. The budget allocation problem

needs to be extended to adopt more complicated real set-
tings. Alon et al. only considered the case when cost to
allocate a budget is the same for all sources. Since each
media channel such as TV, newspaper, and webs has dif-
ferent scales, it would be more natural to consider differ-
ent costs for each channel. Moreover, a market may often
have a competitor against us, and we have to change our
allocation according to the competitor’s decision.

Our Contribution

In this paper, we clarify all the issues above. Let us first
consider the second and the third issues. To deal with
choosing a node multiple times in the model, we extend
a set function to a function over the integer lattice, i.e., the
set of the integer vectors in the Euclidean space. We de-
fine a submodular function over integer lattice, that is, a
function f satisfying f(z) + f(y) > f(z Vy) + f(x Ay)
for all integer vectors = and y, where z V y and x A y de-
note the coordinate-wise maxima and minima, respectively.
This definition generalizes submodularity of a set function,
because if we restrict the domain to the unit hypercube then
the submodularity can be identified with one for a set func-
tion. Note that a function f over integer lattice is usually
supposed to be given as an evaluation oracle, a black box
that computes f(z) for any integer vector x.

A submodular set function has been studied extensively
in combinatorial optimization. There are combinatorial
polynomial-time algorithms for minimizing a submodular
set function (see (Fujishige, 2005; Iwata, 2008) for details).
It is known in (Fujishige, 2005) that these minimization al-
gorithms can cope with submodular functions over integer
lattice if bounded, which can be identified with a ring fam-
ily on some ground set with pseudo-polynomial size, and
hence the minimization problem can be solved in pseudo-
polynomial time. On the other hand, maximizing a sub-
modular function over integer lattice has been done for only
special classes with applications to multi-unit combinato-
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rial auctions (Shioura, 2009).

Having defined submodular functions over integer lattice,
our main theoretical contributions in this paper are the fol-
lowing.

e We introduce a general framework using a submodu-
lar function over integer lattice. We consider the prob-
lem of maximizing a monotone submodular function sub-
ject to a knapsack constraint, which is a natural exten-
sion of maximizing a submodular set function with con-
straints (Nemhauser et al., 1978; Sviridenko, 2004).

We then devise a (1 — 1/e)-approximation algorithm for
this problem. Since the budget allocation problem is
shown to fall into the problem, this gives a solution of
the second issue.

e We show that our framework includes more generalized
models in which the source costs are nonuniform and
there is a competitor. Our first result implies that the
model can also be solved in polynomial time within (1 —
1/e) approximation factor. The result can be compared to
some results in algorithmic game theory (Bharathi et al.,
2007; Borodin et al., 2010; Budak et al., 2011).

In the competitor model, we aim at allocating our bud-
get against a competitor’s allocation, which is known in
advance. Such a situation is practical when we consider
advertising (i.e., imagine television commercial messages.
Companies can prepare their strategies based on competi-
tors’ information). This competitor model also considers
the case when the competitor spreads information in ad-
vance (i.e., the competitor spreads the information even be-
fore we start spreading our information). This means that
we can take “start-up delay” against the competitor into ac-
count.

It should be noted that our submodular framework admits
a potential applicability to other problems than the budget
allocation problem. In fact, classical combinatorial opti-
mization problems such as the maximum coverage and fa-
cility location can be naturally generalized to our frame-
work over integer lattice. Such problems can be applied to
text summarization and sensor placement in machine learn-
ing. These applications will be discussed in Section 3.3.

Let us now consider the first issue. Relatively little work
has been done on improving the quadratic nature of the
greedy algorithm, even for the influence maximization
problem without the budget constraint. Perhaps the most
notable work is (Leskovec et al., 2007), where submodular-
ity is exploited to develop an efficient heuristic algorithm,
based on “lazy-forward” optimization in selecting seeds.
The idea is that the marginal gain of a node in the current
iteration cannot be much better than its marginal gain in

the previous iterations. Then this algorithm exploits sub-
modularity of influence spread function to reduce the num-
ber of Monte-Carlo simulations. Empirical results show
700 times faster than the original greedy algorithm, how-
ever it still takes a few hours to compute a solution for
graphs with tens of thousands of vertices. Subsequently,
various heuristics (Chen et al., 2009; 2010; Jiang et al.,
2011) have been proposed to avoid using Monte-Carlo sim-
ulations, however, these algorithms do not guarantee any
theoretical guarantee. Recently, a theoretically fast algo-
rithm is proposed by (Borgs et al., 2014).

In this paper, we deal with the budget allocation problem
with nonincreasing influence probabilities. Let us observe
that this problem setting often appears in the real world. In-
deed, the impact of advertisement is supposed to be nonin-
creasing. Using the submodularity of the budget allocation
problem, we obtain a faster (1 — 1/¢e)-approximation algo-
rithm, which runs essentially in linear time in the number
of nodes. This allows us to implement our algorithm up
to almost 10M edges (indeed, our experiments tell us that
we can implement our algorithm up to 1 billion edges. It
would approximately take us only 500 seconds.). As far as
we are aware, this is perhaps the first case that the greedy
(1 — 1/e)-approximation algorithm for the submodularity
scales up to this large size.

The rest of the paper is organized as follows. In Section
2, we design a (1 — 1/e)-approximation algorithm for the
monotone submodular function maximization over integer
lattice subject to a knapsack constraint. In Section 3, we ap-
ply it to the budget allocation problems and other problems.
Section 4 describes faster algorithms for the budget alloca-
tion problem assuming that influence probabilities are non-
increasing. Numerical experiments are presented in Sec-
tion 5. Finally, Section 6 concludes the paper.

2. Submodular Maximization over Integer
Lattice subject to Knapsack Constraint

Let S be a finite set. We say that a function f over in-
teger lattice is submodular if it satisfies f(x) + f(y) >
f(xVvy)+ f(x Ay) forall x and y, where x V y and z A y
denote the coordinate-wise maxima and minima, respec-
tively, i.e., (x Vy)(s) = max{x(s),y(s)} and (zAy)(s) =
min{z(s),y(s)}. A function f is monotone if f(x) < f(y)
for all x and y with < y. We assume that f(0) = 0 with-
out loss of generality.

Let ¢ € Zi, w € Rﬁ and B be a nonnegative integer.
Consider the problem to find b € Zi maximizing a mono-
tone submodular function f subject to 0 < b < ¢ and
w-bi= ) qw(s)b(s) < B. We call this problem the
monotone submodular function maximization over integer
lattice subject to a knapsack constraint. We may assume
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without loss of generality that w(s) > 0 for each s in S.

This problem is a generalization of the problem of max-
imizing a monotone submodular set function subject to a
knapsack constraint. Indeed, if c is the all-one vector, then
f can be identified with a monotone submodular set func-
tion. In this case, we can find a (1 — 1/e)-approximate
solution in polynomial time (Sviridenko, 2004). The main
result of this section is the following for a general case.

Theorem 2.1. For the monotone submodular function
maximization over integer lattice subject to a knapsack
constraint, we can find a (1 —1/e)-approximate solution in
O(B?|S|*0) time, where 0 is the running time of an evalu-
ation oracle for f.

Note that the complexity is also bounded by using cax,
the maximum entry of ¢, instead of B. The bound is
O(ct ..|SI°0), and this corresponds to the bound by Sviri-
denko (Sviridenko, 2004) for submodular set function max-
imization subject to a knapsack constraint, where cpax =
1.

We here summarize basic properties for submodular func-
tions over integer lattice. The marginal return with respect
to a feasible solution b, s € S and k € Z, is the value
f(b+Ekxs)— f(b), where s is the characteristic vector of s.
We denote this value by A(b, s, k). The average marginal
return with respect to a feasible solution b € 75, s € Sand
k € Z. is the value A(b, s, k)/(w(s)k), which we denote
by §(b, s, k).

It is well-known that for a set function f, submodularity is
equivalent to the diminishing marginal return property, i.e.,
JXU{s}) = f(X) = f(YU{s}) - f(Y) forall X C Y C
S and s ¢ Y. However, submodularity over integer lattice
does not imply the diminishing marginal return property:

f(b+Xs)_f(b)Zf(b+2Xs)_f(b+Xs) (2)

for arbitrary b and s € S. On the other hand, a weaker
version of this inequality does hold, whose proof can be
found in the appendix.

Lemma 2.2. Let f be a monotone submodular function
over integer lattice. For arbitrary s € S, k € Z, x and y
with x <y, we have

flaVikxs) = f(x) > flyVikxs) — fly). )

The (positive) support of b, denoted by supp™ (b), is the set
of elements s in .S such that b(s) > 0.

Lemma 2.3. Let f be a submodular function. For arbitrary
x and y, we have

favy < f@+ Y

s€suppt (y—z)

4)

(f(@Vy(s)xs) = f(=)).

2.1. (1 — 1/e)-Approximation Algorithm

We next describe our approximation algorithm. In our al-
gorithm, we first enumerate every feasible solution by such
that |[supp™(bg)| < 3. The number of such solutions is
O(B3|S|3). For each feasible solution by, the algorithm
increases each component of by in a greedy way using
GREEDYPROCEDURE, whose description is presented in
Algorithm 1, and obtains a feasible solution b. Finally, the
algorithm returns the best one among the obtained solu-
tions. Since Algorithm 1 requires O(B?|S|0) time, the to-
tal complexity is O(B°|S|*0). Note that the correctness of
our algorithm is omitted due to the space limitation, which
can be found in the appendix.

Algorithm 1 GREEDYPROCEDURE
Input: a feasible solution by
1: Letb := by.
2: Let @ :={(s,k) :s€ Sand1 <k <c(s)—b(s)}.
3: whilew -b < Band Q # 0 do
4:  Find s and k maximizing the average marginal re-
turn §(b, s, k) among (s, k) € Q.
5:  ifw- b+ w(s)k < B then
6: Let b(s) := b(s) + k.

7: Remove all pairs (s, 1) such that b(s) + 1 > c(s)
from Q.
8: else
9: Remove (s, k) from Q.
10:  end if

11: end while

Let us leave some remarks on our algorithm. Although
the worst case complexity of our algorithm is quite expen-
sive, Algorithm 1 can be accelerated using a “lazy evalua-
tion” technique given in (Minoux, 1978), and thus it runs
more efficiently in practice. Also, there is another ap-
proach to reduce the time complexity at the expense of a
good approximation ratio. We can apply ideas similar to
those for maximizing a submodular set function to make
practical simpler algorithms with somewhat worse approx-
imation factors (Lin & Bilmes, 2010). For example, as in
(Alon et al., 2012), if we enumerate solutions with only one
positive support before performing GREEDYPROCEDURE,
then we can find a 1/2(1 — 1/e)-approximate solution in
O(B?|S|%0) time.

2.2. Faster Algorithm under Diminishing Marginal
Return Property

We conclude this section with designing a faster (1 —
1/e)-approximation algorithm if f satisfies the diminish-
ing marginal return property (2) and a cost w is uniform,
i.e., w(s) = 1 for any s € S. Note that even if f admits
the properties, the problem is still NP-hard and (1 — 1/e)-
approximation is best possible unless P=NP (Feige, 1998).
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We execute GREEDYPROCEDURE with by := 0. By (2), we
have (b, s, k) < d(b, s, 1) for arbitrary b, s and k. Hence
GREEDYPROCEDURE always chooses k = 1 for each it-
eration. Furthermore, the procedure never fails to increase
the tentative solution because w is uniform. Therefore, by
following a similar argument to the proof of Theorem 2.1,
we can show that the output is a (1 — 1/e)-approximate
solution. The running time follows from the fact that b in-
creases B times and each iteration requires O(|S|#) time to
find s maximizing 6(s, b, 1). Thus the following holds.

Theorem 2.4. For the submodular function maximization
over integer lattice, if f admits the diminishing marginal
return property and w is uniform, then we can find a (1 —
1/e)-approximate solution in O(B|S|0) time.

3. Applications of Submodular Maximization

In this section, we focus on the budget allocation prob-
lem (as defined in Section 1), and we show that more gen-
eralized models fall into our framework. We also mention
applications to other problems such as text summarization
and sensor placement in Section 3.3.

3.1. Budget Allocation Problem with Nonuniform Costs

We extend to the bipartite influence model with nonuniform
costs. That is, in addition to an instance of the budget al-
location problem, each source node s has a cost w(s) > 0.
The objective is to distribute the budget respecting the ca-
pacities of nodes and ) g w(s)b(s) < B such that the
expected number of activated nodes is maximized. We call
this problem the budget allocation problem over bipartite
influence model with nonuniform costs.

In the model, the probability that ¢ becomes active is equal
to (1). Let f; be a function of an allocation vector b defined
as (1). We note that we define f;(b) = —oc if b does not
satisfy 0 < b < c¢. It is easy to see that the function f; is
monotone for each ¢ € T'. In addition, the following lemma
asserts that f; is submodular.

Lemma 3.1. Foranyt € T, the function f; is submodular.

Proof. It suffices to show g;(b) := [ er ) e a —p)
is supermodular. Let o« := g¢(z A y), 5 := g:(z)/a and
v := g+(y) /. We can easily check that o, 3,y € [0, 1] and
g:(z Vy) = aB~. Then we obtain g;(z V y) + gi(z A y) —
9¢(x) —ge(y) = a(By+1-B—7) =a(l-B)(1—7) é
0.

Since the expected number of activated nodes for an al-
location b is equal to f(b) := »_, ., f:(b), the expected
number is also submodular as a function of b. The fol-
lowing result is now immediate from Theorem 2.1, since
0 = O(B|S||T]).

Theorem 3.2. A (1 — 1/e)-approximate solution for the

budget allocation problem with nonuniform costs can be
found in O(B®|S3|T|) time.

3.2. Budget Allocation Problem with a Competitor

We extend the budget allocation problem with nonuniform
costs to the two-player case. In the model, there is a
competitor against an advertiser. The competitor allocates
his/her budget to .S in advance, and will try to influence
target nodes at the same time as the advertiser’s trials. Un-
der this situation, the advertiser aims at allocating a budget
to source nodes to maximize the expected number of tar-
get nodes influenced by his/her trials. We suppose that the
trials of the two players are made in a discrete time step:
At each time step 4, first the competitor makes the ith trial,
and then the advertiser makes the ith trial. The trials will
be repeated until both budget allocations run out.

Thus each target node ¢ of T has the following three states:
inactive, positively active (influenced by an advertiser), and
negatively active (influenced by a competitor). Since an ad-
vertiser is a follower, we assume that it has a chance to ac-
tivate positively both an inactive node and a negatively ac-
tivated node. Note that when a node is already influenced
by the competitor, the probability to activate it should be
smaller than one to activate an inactive node. In contrast,
we suppose that the competitor can activate an inactive
node, but not a positively active node. Thus the model is
progressive with respect to positively active nodes.

More specifically, the model is defined as follows. For a
bipartite graph G = (S,T; E), an advertiser is given a
capacity ¢(s), a cost w(s) and two probabilities p¢” and
qgi) with qgi) < pgi) fori = 1,...,¢(s) for each s € S.
In addition, a competitor has already allocated his budget

to source nodes, which is denoted by B(S) for each source
node s € S. The competitor also has probabilities ;3&’) for

i =1,...,b(s) for each s in S. The probability that ¢ is
activated by s in the ith trial depends on the status of ¢ as
follows. If ¢ is inactive, then the probabilities that ¢ is posi-
tively/negatively activated are p,(;i) and ﬁgi), respectively. If
t is already negatively active, then the probability that ¢ is
positively activated is qgi). In this setting, we aim at maxi-
mizing the expected number of positively active nodes. For
te€Tandkwithl < k < 14+ max,es b(s), let Ey i, be the
event that ¢ becomes negatively active in the kth trial (when
k=14 max,cpp) b(s), Ey ; means the event that t never
become negatively active). Conditioned on E j, the prob-

ability that ¢t becomes positively active is

min{b(s),k—1} 4 b(s) 4
fr®) = 1= T (=) IT (1 -42)-
sel(t) i=1 i=k

The probability that ¢ becomes positively active equals
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ok Ak fer(b), where N = Pr(E,;). Therefore,
the expected number of positively active nodes, denoted
by f(b), is equal to >, >, Ak fe,k(b). Similarly to
Lemma 3.1, f; , is shown to be monotone and submodular
for any ¢ and k. Since f is a nonnegative linear combina-
tion of f;’s, f is also monotone and submodular. Thus
this problem can be reduced to the monotone submodular
function maximization over integer lattice.

Theorem 3.3. For the budget allocation problem with a
competitor, the objective function is monotone and submod-
ular. Thus we can find a (1 — 1/e)-approximate solution in
polynomial time.

3.3. Other Applications

In this section, we present applications of our framework
to problems other than the budget allocation problems.
Submodular set functions arise in several applications (see,
e.g., (Krause & Golovin, 2014)). Such applications can
naturaly be extended to our framework allowing multiple
choices.

Maximum Coverage Let us first see that our frame-
work includes a generalization of the well-known maxi-
mum coverage problem. In the maximum coverage prob-
lem, we are given a finite set V' and a family of subsets
Cq,...,Cy,, in V, and the objective is to choose k sub-
sets from C,...,C,, so that the number of the covered
elements in V' is maximized. Here consider covering func-
tions p; : Zy — 2V (j = 1,...,m), each of which is
monotone, and we would like to maximize the number of
the elements covered by p;’s, i.e., | Ui, p;(b;)], subject
to 37", bj < k. Note that the covering function p; cor-
responds to the situation where choosing j multiple times
makes the covered set larger. This problem clearly gener-
alizes the maximum coverage problem, that corresponds to
the case when we can only choose each p; at most once. It
is not difficult to see that the objective function is a mono-
tone submodular function over integer lattice, and therefore
a (1 — 1/e)-approximate solution can be found in polyno-
mial time by Theorem 2.1.

Facility Location We are given a set V' of facilities, and
we aim at deciding how large facilities are opened up in
order to serve a set of m customers, where we represent
scale of facilities as integers 0,1, ..., c(“0” means we do
not open a facility). If we open up a facility j of scale
b;, then it provides service of value p; ; (bj) to customer 7,
where p; ; : Zy — R(j = 1,...,m) is a given mono-
tone function. We suppose that each customer chooses the
opened facility with highest value. That is, when we as-
sign b; to each facility j, the total value provided to all
customers is given by f(b) = >, max;ecgp; ;(b;). It
turns out f is monotone and submodular over integer lat-
tice. Thus a (1 — 1/e)-approximate solution can be found

in polynomial time by Theorem 2.1.

Sensor Placement In a standard sensor placement sce-
nario, we can put at most one sensor in each spot to max-
imize the area covered by sensors. Here we can con-
sider a more general problem where to place sensors with
some specified power in a field subject to budget constraint,
where the area covered by a sensor depends on its power
setting. This problem is almost equivalent to the maxi-
mum coverage problem with multiple choices as discussed
before, and hence we can apply our approximation algo-
rithm for the problem. A similar sensor placement problem
where we can put two kinds of sensors in each spot is stud-
ied in (Singh et al., 2012).

Text Summarization The objective of text summariza-
tion is to find a small set of words that summarizes the
feature of a given text as well as possible. Recently, it is
shown that a variety of objective functions used in summa-
rization admits submodularity and that submodular-based
approaches outperform in practice (Lin & Bilmes, 2011).
For example, in the concept-based summarization (Fila-
tova & Hatzivassiloglou, 2004), we are to find a subset S
of sentences maximizing the total credit of concepts cov-
ered by S, i.e., maximize Zier(s) ¢i, where T'(S) is the
set of the concepts covered by S and ¢; € R is the credit
of a concept i. Indeed, this objective function is submodu-
lar. We now extend the submodular summarization model
to the one that incorporates “confidence” of sentences, i.e.,
we can choose a sentence in various confidence level like
“low”, “mid” or “high” rather than just choose or not. As in
the maximum coverage, let us introduce a monotone cov-
ering function p; for each sentence j. Then the objective
function of the extended model is defined to be the total
credit f(b) = ) ¢;, where the sum is taken over concept
i covered by U;p;(b;). Again, this objective function is
a monotone submodular function over integer lattice, and
hence we can use our approximation algorithm for the ex-
tended model.

4. Faster Algorithm for Budget Allocation
with Nonincreasing Influence Probabilities

In this section, we assume the budget allocation problem
has nonincreasing influence probabilities, i.e., for each
s € S, we have pgifl) > pgi) fori = 2,...,¢(s). The
property captures the real-world phenomena of marketing.
In our model, multiple trials to activate target nodes can be
viewed as discrete-time steps. Thus it is natural to decrease
effectiveness of an advertisement with time.

Lemma 4.1. Under the nonincreasing influence proba-
bilities, the objective function [ admits the diminishing
marginal return property.

By Theorem 2.4, performing GREEDYPROCEDURE with
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bo := 0yields a (1—1/e)-approximate solution. Algorithm
2 describes an implementation of the algorithm in Theorem
2.4 with an additional trick to compute the value of f effi-
ciently. Here we use auxiliary variables ¢(s) and ¢(t) for
each s € S and t € T. During execution of the algorithm,

¢(t) traces the value [ Hf(zsl)(l - pgi)) and ¢(s) is
always equal to 37, ) ¢(t). Thus f(b+ xs) — f(b) =

b(s)+1 b(s)+1
Yrer( (0(1) — (1= p" T )o(1)) = p TV g(s). Ev-
idently the algorithm runs in O(B(|S| + |T| + |E|)) time.
Summarizing the arguments, we have the following theo-
rem.

Theorem 4.2. For the budget allocation problem with non-
increasing influence probabilities, we can find a (1 —1/e)-
approximate solution in O(B(|S| + |T'| + |E|)) time.

Similarly to Algorithm 1, we can apply the lazy evaluation
technique to Algorithm 2 to accelerate in practice. We use
this speeding up technique in our experiments.

Algorithm 2 SIMPLEGREEDYPROCEDURE

1: Let b := 0, and let ¢(t) := 1 for each ¢ € T and
¢(s) :=d(s) foreach s € S.

2: fori=1to B do

3:  Choose s maximizing pgb(s)ﬂ)cﬁ(s).

4:  Letb(s):=b(s)+1.

5: Letog(t) :=(1— pgb(s)))qb(t) for each t € T'(s) and
let ¢(s) := 3 e (s) (1) foreach s € S

6: end for

7: return b

In addition, under a similar assumption, we design a faster
algorithm for the budget allocation problem with a com-
petitor. Let us assume that pgifl) > pgi) and qgifl) > qgi)
for arbitrary s € S and ¢ with 2 < ¢ < ¢(s). Then fi
admits the diminishing marginal return property for each ¢
and k, and hence so does f. Therefore, a greedy algorithm
similar to Algorithm 2 computes a (1 — 1/e)-approximate
solution. A pseudocode description of the greedy algorithm

that runs in O(B?|E|) time is presented in the appendix.

Theorem 4.3. If pgi) and q(gi) are nonincreasing and the
cost is uniform, then we can find a (1 — 1/e)-approximate
solution for the budget allocation problem with a competi-

tor in O(B?|E|) time.

5. Experiments

We now verify our theoretical results by implementing Al-
gorithm 2 for the budget allocation problem over bipartite
influence model with nonincreasing influence probabilities.

To demonstrate that the greedy choice indeed performs
well, the expected number f(b) of activated nodes by the
greedy choice is compared to that by other strategies. The
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Figure 1. P=1.0, Yahoo! Bidding Data
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Figure 2. P=0.1, Yahoo! Bidding Data

0

“degree” strategy chooses the top B highest degree nodes.
This strategy is based on the intuition that the high degree
nodes should have high influence. In many variants of in-
fluence maximization problems, this high-degree-selection
strategy is reported not to outperform the greedy choice
(Kempe et al., 2003; Budak et al., 2011). The “degree-
prob” strategy takes the influence probability into account,
in addition to the degree condition. It chooses the top B
nodes with the largest expected number of influences, i.e.,
degree multiplied with the probability. The “random” strat-
egy is a baseline choice that uniformly randomly chooses
B nodes.

Figures 1 and 2 are our simulation results on Yahoo! Search
Marketing Advertiser Bidding Data (Yah). It is a bipar-
tite graph between 1,000 search keywords and 10,475 ac-
counts, where each edge represents one “bid” to advertise-
ment on the keyword. Note that this data originally does
not represent influence relationship, but it encodes the in-
formation “who is interested in what” relationship in the
real world. The motivation of the experiment is to find a
good choice of “what” set that maximizes the influenced
“who’s, that is, a set of keywords that is maximally associ-
ated to advertisers. This would be useful for the publisher
to promote keywords to advertisers. For the purpose, we
only use the graph, although the original data contains bid
prices or time data. The graph has 52,567 edges (repre-
senting ‘who bid at least once to what’ relation). The prob-
(4)

ability ps~ of influence is assigned as follows. Let P be

(1)

a parameter. For each s, we have set ps’ a random value
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Figure 4. P=0.1, Synthesized Graph

between 0 and P. Then, pgiH) is set to pgi) - X, where X is

a random value between 0 and 1, generated for each ¢ and
s. Figures 1 and 2 show the results on P = 1 and P = 0.1
cases.

In order to implement our algorithms for larger scale
graphs, we have also run our experiments on artificially
generated graphs. Figures 3 and 4 are simulation results
on synthesized graphs with |S| = 200,000 and |T'| =
2,000,000 nodes with around 8,000,000 edges between
them. The graphs are generated so that the degree distribu-
tion of the source nodes obey the power law of v = 2.0.
After assigning the degrees to each source node s, it is con-
nected to deg(s) nodes uniformly chosen from 7. Allo-
cation of 1,000 budgets in the greedy algorithm took 3.36
seconds (including the graph generation time) in average
on a machine with Xeon E5-2690 2.9GHz CPU and 64GB
memory.

We have also implemented the algorithm when a competi-
tor exists. We have started with the situation that the com-
petitor already allocated 100 budgets by the “degree” strat-

egy. The probability q‘S” to turn over a node already in-
fluenced by the competitor is set to 0.2 - pgi). Figures 5
and 6 summarize the results in the competitive setting on
the Yahoo! Bidding data graph. The “competitor” line in
the figures shows the number of nodes kept influenced by

the competitor against our greedy algorithm.

In all the configurations, the greedy algorithm out-
performed degree-based strategies. “Degree-prob” also
showed a comparable result on the synthesized graphs. In-
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terestingly, the “greedy-unaware” strategy in the competi-
tive setting, which is to allocate budgets greedily without
taking the existence of the competitor into account at all, is
showing a very close performance to the competitor-aware
one. This may be explained as follows; except for the ex-
treme situation that pgi) is very high and qgi) is very low,
a highly influential set of source nodes would be taken by
the advertiser, even after some part of it is grabbed by the

competitor.

6. Conclusion

In this paper, we have defined a submodular function over
integer lattice, extending a submodular set function, and in-
troduced the problem of maximizing a monotone submod-
ular function subject to knapsack constraint. This problem
includes the budget allocation problem (Alon et al., 2012)
and more general budget allocation problems with nonuni-
form costs and a competitor. Also, this problem has appli-
cations to sensor placement and text summarization. We
have devised a (1 — 1/e)-approximation polynomial-time
algorithm for the problem. In addition, based on the dimin-
ishing marginal return property, we have devised a faster al-
gorithm for the budget allocation problem under some nat-
ural scenario, and have carried out numerical experiments.
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A. Proof of Theorem 2.1

Let b* be an optimal solution for a given instance of the
problem. We first examine properties of GREEDYPRO-
CEDURE that hold for arbitrary by. We then show
that there exists some by in the enumeration step such
that GREEDYPROCEDURE returns b with f(b) > (1 —
1/e) f(b*), which proves Theorem 2.1.

Let us fix an initial solution by, and analyze behavior of
GREEDYPROCEDURE with input by. We denote by b; the
tentative solution b at the beginning of the 7th iteration and
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denote by s; and k; s and k chosen in the ith iteration, re-
spectively. Assume that GREEDYPROCEDURE first has not
updated the tentative solution b in the Lth trial. Equiva-
lently, let L be the minimum number such that by, = by 41
and b; < b; 41 fori =1,..., L —1. Note that if such a situ-
ation never happens during the execution of GREEDYPRO-
CEDURE, define L to be the number of iterations.

Lemma A.1. Without loss of generality, we may assume
that b(sp,) + kr < b*(sp).

Proof. Suppose that b(sr,) + kr, > b*(sr.). Let us consider
amodified instance in which the capacity of sz, is decreased
to b(sr) + ki — 1. The optimal value is unchanged by this
modification because b* is still feasible and optimal. Fur-
thermore, GREEDYPROCEDURE returns the same solution
(with respect to same bg). Thus it suffices to analyze the al-
gorithm in the modified instance. Repeating this argument
completes the proof of this lemma. O

Consider the ith iteration of the algorithm. For simplic-
ity, we denote A(b;, s;, k;) by A;, d(b;, s;, ki) by d;, and
w(s;) by w;. Note that f(b;) = f(bo) + Z;;ll A; for
t=1,...,L.Let B':= B —w - bg.

Lemma A.2. For i = 1,...,L, we have A; >

w;k; N
) - 00

Proof. Letus denote b; Vb* = b;+> asXs, where the sum
is taken over s in supp ™ (b* — b;) and as 1= b*(s) — b;(s).
Since b; Vb*(s)xs = b;+as X, foreach s € supp™ (b*—b;),
(4) implies

FOivo) < fb)+ >

sesuppt (b* —b;)

< f(bi) + Z

sesuppt (b* —b;)

(f(bz + asXs) -

w(s)asd;,

where the last inequality follows from the fact that ( f(b; +
kxs) — f(b;))/(w(s)k) < §; forall s € S and k. Since
> w(s)ay is at most B’ and f(b*) < f(b; V b*) by the
monotonicity of f, it holds that f(b*) < f(b;) + 6;B’.
Therefore, we obtain §; > (f(b*) — f(b;))/B’. O

Applying Lemma A.2 repeatedly, we have the following
lemmas.

Lemma A3. Fori=1,...,L, we have f(b*) — f(b;) <
(f(*) = f(bo)) - ITj—y (1 — wjsk;/B').

Proof. We prove this lemma by induction on ¢. For ¢ =
1, then the inequality holds because Ay > w1k (f(b*) —

f (b))

f(bo))/B’ by Lemma A.2. For i > 1, we have

F07) — Fb0) = 308y = F07) — b0) ~ Y8y - A

i—1 1]{?1 1—1

< Fb7) = Fbo) = YAy = 5 | F(6) = F(bo) = Y- A
J=1 j=1

(by Lemma A.2)

<

~(1-%%) F) — o)~ 3

J=1

i—1
< (1- %) - - seon - TT (1- %57,

(by the]ijliluction hypothesis)
which completes the proof. O
Lemma Ad4. It holds that f(b*) — f(b;) < (f(b*) —
f(bo))/e.

Proof. Let ¢(x) = In(1 — z). Note that ¢ is concave in
[0,1). By Jensen’s inequality, we have Zle o(xz;)/L <
cp(ZfZl x;/L) for x1,...,2 € [0,1). Putting x; :=
w;k;/B’, we obtain

1 wik; 1 = w;k; 1

o)

where the last inequality follows since Zle wik; > B’
and ¢ is a monotonically decreasing function. Thus we

have
L L
H(-5)<(-1) =5 o

i=1

Combining this fact and Lemma A.3 completes the proof.
O

We now move to proving that the greedy procedure re-
turns a (1 — 1/e)-approximate solution for some by in
the enumeration step. If the optimal solution b* satisfies
|supp™ (b*)| < 3, it can be found in the enumeration step.
Therefore, we assume that all the optimal solutions have
more than three positive components. Let s7, s3, s3 be ele-
ments in S satisfying:

"
Si

A (v;';llb*(S}f)xs;,s, b*(S))

S argmax
SES\{s] 57 1}

for i = 1,2, 3. Since the size of the support of b* is more
than three, such s7, s5 and s3 clearly exist.
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Lemma A.S. For the feasible solution by with the support
{s7, 85,55} satisfying bo(sf) = b*(s}) for 1 < i < 3, we
have Ap, < f(bg)/3.

Proof. Tt follows that Aj flbr + krxs,) —
fr) < f(br vV b*(sp)xs,) — f(br) since br(sp) +
kr < b*(sy). By Lemma 2.2, Aj is at most
O (sp)xs.) — f(0) = f(b"(sL)Xs, ), and hence Ap <
F(0*(sT)xsy) = A(0,s7,0%(s7)) by the choice of si.
Similarly, by the choices of s3 and sj, we have Ay <
A" (s7)Xsy,53,0%(s3)) and Ap < AD*(s])xs; V
b*(s3)Xs5,53,0"(s3)). Adding these inequalities, we ob-
tain Ay, < f(bg)/3. O

We are now ready to prove Theorem 2.1. Since f(b) >
f(bo) + ZiL:1 A; — Ap, Lemmas A.4 and A.5 imply that

f(b) = (1 =1/3)f(bo) + (1 = 1/€)(f(b") = f(bo))
> (1=1/e)f(b")

for the initial solution by described in Lemma A.5. This
completes the proof of Theorem 2.1.

B. Proof of Lemmas
B.1. Proof of Lemma 2.2

Proof. If k < z(s) then both sides are 0. If z(s) < k
y(s) then the inequality (3) is equivalent to f(z V kyxs)
f(x) > 0, which is valid by monotonicity. Lastly, if & >
y(s) then we have f(zVkxs)+ f(y) > f(yViExs)+ f(z)
by submodularity, which directly implies (3). O

VAN

B.2. Proof of Lemma 2.3

Proof. We prove this lemma by induction on the size of
suppt (y — x). If [supp™(y — x)| = 0, thatis, z Vy =
x, then (4) is trivial. Suppose that there is an index s €
supp™(y — x). We define 43 = y — y(s)xs. Theny =
y1 V y(s)xs and y1 A y(s)xs = 0 hold. By submodularity
of  V y; and x V y(s)xs, we have

f@vy)+f(@vy(s)xs) > flavy)+f(zVy)AM@Vy(s)xs))-

Since it holds that

(zVy) Az Vy(s)xs) =2V (y1 Ay(s)xs) =z V0 =z,

the above inequality implies that

flevy) + f@Vyls)xs) — fz) = f(z Vy).

Therefore, applying the induction hypothesis to x and y,
we obtain (4). Thus the statement holds. L]

B.3. Proof of Lemma 4.1

Proof. By simple algebra, we can easily check that

fo+xs) — f(b)
b(v)
=p" N ] —p), (7)
tel(s) vel'(t) i=1
f(b+2Xs> _f(b+Xs>
b(v)
=(1- (b( )+1) (b(9)+2) Z H H
tel(s) vel'(t) i=1
®)

Leta =37, ) [uerp 12 (1—p?) for simplicity of

notations. Then we have f(b+xs) (b) ( (b+2xs)
a(pgb(s)w) _pgb(s)+2)( (b(s )+2) )) ( (b( )+2)) >
0. O

C. Pseudocode of Algorithm

Algorithm 3 SIMPLEGREEDYPROCEDUREFORCOM-
PETITORMODEL
1: foreacht € T'do

2: LetA:=1
3: fork =1tol+ maxgepg) b(s) do
4: Let  o¢(t) = 1 and Mg =
A <1 - Hser(t)~5( v)>k(1 - ﬁ(k)))
50 Let A= AT eriagesor(l— 54
6: end for
7: end for
8: Letb:=0.
9: fori = 1to B do
10:  Choose maximizing
Srer(sy T Ak S”% (1)-
11:  Letb(s) :=b(s) +
12: forteT(s)do .
13: fork=1to1+ maxsep b(s) do
14: Let (1) = (1 — ") g (0).
15: end for
16:  end for
17: end for

18: return b




