Expressive Power of Safe HORS

Examined Through Decomposition of Higher Order Programs to Garbage Free $1^{\text {st }}$ Order Form

Kazuhiro Inaba

Joint work with Sebastian Maneth
at Shonan Meeting on
Automated Techniques for Higher-Order Program Verification
2011

Background

- HORS (Higher Order Recursion Scheme) is very powerful and expressive.
- n-EXPTIME hard problems!

Computational Complexity w.r.t. Grammar Size and Data Size

- MSO on words/trees:
- Emptiness checking is non elementary (HYPEREXP) for the size of the formula.
- The class of languages it represents is regular.
- $O(n)$ time, $O(1)$ space membership wrt the word length
"MSO on words is a verrrrrrrry concise representation for relatively simple languages."

How about HORS?

- HORS:
- Emptiness, Model Checking, Containment by Regular Languages, ... are n-EXPTIME hard.
- What is known about the languages it describes?
- The class of languages it represents is ????.
- ???? time, ???? space membership wrt the word length.

[Greibach 70]

> Aho and Ullman [3] have shown that the indexed languages can be characterized by AFAs whose data structure is a pushdown store of pushdown stores, with an added duplicate order which replicates the topmost store. They call these degree 2 pushdown stores and show that this idea can be extended to degree n, for any n, and that all these families have decidable emptiness problems and are contained in the context-sensitive languages.
3. A. V. Aho and J. Ullman, private communication.

Today's talk verifies the statement (even for wider class of languages).

Our Approach

If they are at most of size M at any point, $O(M)$ space $\& O\left(2^{M}\right)$ time.

Outline of This Talk

- Target Language
- Higher-order Tree Transducers
- $1^{\text {st }}$-order Decomposition
- Sketch of the construction

- Garbage Free Form
- Derived consequences
- Sketch of the construction

HTT [Engelfriet\&Vogler 88]

Higher-order "single-input" "safe" tree transducer
Mult :: Tree \rightarrow Tree
$\operatorname{Mult}\left(\operatorname{Pair}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right) \rightarrow \operatorname{Iter}\left(\mathrm{x}_{1}\right)\left(\operatorname{Add}\left(\mathrm{x}_{2}\right)\right)(Z)$
Iter :: Tree \rightarrow (Tree \rightarrow Tree) \rightarrow Tree \rightarrow Tree
$\operatorname{Iter}(S(x))(f)(y) \quad \rightarrow$ Iter $(x)(f)(f(y))$
$\operatorname{Iter}(Z)(f)(y) \quad \rightarrow y$
Add :: Tree \rightarrow Tree \rightarrow Tree
$\operatorname{Add}(S(x))(y) \rightarrow \operatorname{Add}(x)(S(y))$
Add(Z) (y)

HTT

- Set of mutually recursive functions
- Defined in terms of induction on a single input tree
- Input trees are always consumed, not newly constructed
- Output trees are always created, but not destructed
- Rest of the parameters are ordered by the order
- Multiple parameters of the same order is ok but in uncurried form

HTT

Nondeterminism (// and \perp)

```
Subseq :: Tree }->\mathrm{ Tree
Subseq(Cons(x,xs)) }\boldsymbol{->}\mathrm{ Cons(x, Subseq(xs))
                        Subseq(xs)
Subseq(Nil) }\boldsymbol{->}\mathrm{ Nil
Subseq(Other) }\boldsymbol{->
```

In this talk, evaluation strategy is unrestricted (= call-by-name). But call-by-value can also be dealt with.

HTT

- Notation: n-HTT
- is the class of Tree \rightarrow Tree functions representable by HTTs of order $\leqq n$.
$-\{$ Subseq $\}$ is 0-HTT, $\{$ Mult, Iter, Add $\} \in 2-H T T$
Subseq :: Tree \rightarrow Tree

Mult : : Tree \rightarrow Tree
Iter : : Tree \rightarrow (Tree \rightarrow Tree) \rightarrow Tree \rightarrow Tree Add $::$ Tree \rightarrow Tree \rightarrow Tree

Order-n to Order-1

THEOREM [EV88] [EV86]

$$
(\mathrm{n}-\mathrm{HTT}) \subseteq(1-\mathrm{HTT})^{\mathrm{n}}
$$

n-th order tree transducer is representable by a n-fold composition of $1^{\text {st }}$-order tree transducers. (" $=$ or $\subset \subset$?" is left open, as far as I know.)

Proof: $\mathrm{n}-\mathrm{HTT}=1-\mathrm{HTT} \circ(\mathrm{n}-1)-\mathrm{HTT}$

Idea:

Represent $1^{\text {st }}$-order term Tree \rightarrow Tree by a Tree.

$$
\begin{gathered}
F: \text { Tree } \rightarrow \text { Tree } \rightarrow \text { Tree } \\
F(Z)(y) \rightarrow S(S(y))
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{F}:: \text { Tree } \rightarrow \text { Tree } \\
& \mathrm{F}(\mathrm{Z}) \rightarrow \mathrm{S}(\mathrm{~S}(\mathrm{Y}))
\end{aligned}
$$

Represent $1^{\text {st }}$-order application symbolically, too.

$$
\emptyset_{\ldots} \rightarrow F(x)(Z)
$$

Proof: $\mathrm{n}-\mathrm{HTT}=1-\mathrm{HTT} \circ(\mathrm{n}-1)-\mathrm{HTT}$

Represent $1^{\text {st }}$-order things symbolically.

$$
\begin{aligned}
& \mathrm{F}:: \text { Tree } \rightarrow \text { Tree } \\
& \mathrm{F}(\mathrm{Z}) \quad \rightarrow \mathrm{S}(\mathrm{~S}(\mathrm{Y}))
\end{aligned}
$$

$$
\left.\left.\varliminf_{\ldots} \rightarrow \text { (F } x\right), z\right)
$$

Then a 1-HTT performs the actual "application".

$$
\begin{array}{ll}
\operatorname{Eval}(@(f, b))(y) & \rightarrow \operatorname{Eval}(f, \operatorname{Eval}(b)(y)) \\
\operatorname{Eval}(Y)(y) & \rightarrow y \\
\operatorname{Eval}(S(x))(y) & \rightarrow S(E v a l(x)(y)) \\
\operatorname{Eval}(Z)(y) & \rightarrow Z
\end{array}
$$

Mult $\left(\operatorname{Pair}\left(x_{1}, x_{2}\right)\right) \rightarrow$ @(Iter $\left.\left(x_{1}\right)\left(\operatorname{Add}\left(x_{2}\right)\right), Z\right)$ Iter $(S(x))(f) \rightarrow$ (Iter $(x)(f), ~ @(f, Y))$ $\operatorname{Iter}(Z)(f) \quad \rightarrow Y$ $\operatorname{Add}(\mathrm{S}(\mathrm{X})) \quad \rightarrow @(\operatorname{Add}(\mathrm{X}), \mathrm{S}(\mathrm{Y}))$ Add (z)
$\rightarrow Y$

Eval(@(f, b))(y) $\boldsymbol{\rightarrow} \operatorname{Eval(f,~Eval(b)(y))~}$
$\operatorname{Eval}(\mathrm{Y})(\mathrm{y}) \quad \rightarrow \mathrm{y}$
$\operatorname{Eval}(S(x))(y) \quad \rightarrow$ S(Eval(x)(y)) Eval(Z)(y)
\rightarrow Z

Eval (@, $\mathrm{y}=\perp$)

$\operatorname{Eval}(\mathbf{Y}, \mathrm{y}=\operatorname{Eval}(@, y=z)$

Why That Easy

- Relies on the ordered-by-order condition.
- No variable renaming is required! [Blum\&Ong 09]

Now, Decomposed.

Next, Make Intermediate Trees Small.

1-HTT ${ }^{n}$

THEOREM [I. \& Maneth 08] [I. 09] ${ }^{(+ \text {improvement) }}$

$\forall \tau_{1}, \ldots, \tau_{\mathrm{n}} \in 1-\mathrm{HTT}, \exists \tau_{\text {del }} \in 0-\mathrm{LHTT}, \tau^{\prime}{ }_{1}, \ldots, \tau_{\mathrm{n}}{ }^{\prime} \in 1-\mathrm{HTT}$, for any $\left(\tau_{n} \circ \ldots \circ \tau_{1}\right)(s) \ni \mathrm{t}$, there exist $\quad \tau^{\prime}{ }_{\text {del }}(\mathrm{s}) \ni \mathrm{s}_{0}, \tau_{i}^{\prime}\left(\mathrm{s}_{\mathrm{i}}\right) \ni \mathrm{s}_{\mathrm{i}+1},\left|\mathrm{~s}_{\mathrm{i}}\right| \leqq\left|\mathrm{s}_{\mathrm{i}+1}\right|, \mathrm{s}_{\mathrm{n}}=\mathrm{t}$.

[IM08] K. Inaba \& S. Maneth, "The complexity of tree transducer output languages", FSTTCS

Consequences : Range Membership

Membership problem for the class Range(1-HTT ${ }^{n}$) of languages is

- in DLINSPACE
- in NP

That is, given $\left(\tau_{n} \circ \ldots \circ \tau_{1}\right)$ and t, we can determine "ヨs. $\left(\tau_{n} \circ \ldots \circ \tau_{1}\right)(s) \ni t "$ in $O\left(f\left(\left|\tau_{1}\right|+\ldots+\left|\tau_{n}\right|\right) \cdot|t|\right)$ space and in $\mathrm{O}\left(\mathrm{g}\left(\left|\tau_{1}\right|+\ldots+\left|\tau_{\mathrm{n}}\right|\right) \cdot \operatorname{poly}(|\mathrm{t}|)\right)$ nondeterministic time.

Consequences : Range Membership

Membership problem for the class Range($1-\mathrm{HTT}{ }^{\mathrm{n}}$) of languages is

- in DLINSPACE
- in NP

Proof

Guess (in NP) or
exhaustively try (in DLINSPACE) all the intermediate trees: $s_{0} \ldots s_{n-1}$.

Then check Range $\left(\tau_{\text {del }}^{\prime}\right) \ni s_{0}$ and $\tau_{i}^{\prime}\left(s_{i}\right) \ni s_{i+1}$, both turn out to be feasible in DLINSPACE \cap NP.

Consequences : Range Membership

Membership problem for the class Range(1 -HTT ${ }^{n}$) of languages is

- in DLINSPACE
- in NP

Consequences : Linear-Size Inverse

For all $\tau_{\mathrm{n}}{ }^{\circ} \ldots \circ \tau_{1} \in 1-H T T^{n}, t \in \operatorname{Range}\left(\tau_{\mathrm{n}} \circ \ldots \circ \tau_{1}\right)$ there exists s such that

$$
\mathrm{f}(\mathrm{~s}) \ni \mathrm{t} \text { and }|\mathrm{s}|<\mathrm{h}\left(\left|\tau_{\mathrm{n}} \circ \ldots \circ \tau_{1}\right|\right) \cdot|\mathrm{t}|
$$

COROLLARY (by our constructive proof)
Right inverse of 1 - $\mathrm{HTT}^{\mathrm{n}}$ is computable in DLINSPACE \cap NP.

How to Construct the "Garbage-Free" Form
Make each 1-HTT "productive"

How to Construct the "Garbage-Free" Form

Make each 1-HTT "productive" by separating its "deleting" part

$$
\tau_{n}=\tau_{\text {del }}^{\prime} \tau_{n}^{\prime}
$$

How to Construct the "Garbage-Free" Form

Make each 1-HTT "productive" by separating its "deleting" part, and fuse the deleter to the left [En75,77][Envo85][EnMa02]

Repeat

Key Part

Separate the "deleting" transformation

Key Part

Slogan: Work on every node
($\tau^{\prime}{ }_{\mathrm{n}}$ must generate at least one node for each input node)

Work on Every Node \Rightarrow Visit All Nodes

Deleting UTs

$$
\begin{array}{rll}
\mathrm{G}(\mathrm{Z})\left(\mathrm{y}_{1}\right) \rightarrow & \mathrm{z} & / / \mathrm{y}_{1} \\
\mathrm{~F}\left(\mathrm{~S}\left(\mathrm{x}_{1}, x_{2}\right)\right) & \rightarrow & \frac{\mathrm{F}\left(\mathrm{x}_{1}\right)}{} \\
& / / & \frac{\mathrm{F}\left(\mathrm{x}_{2}\right)}{\tau_{\mathrm{n}}} \\
& \| & \mathrm{G}\left(\mathrm{x}_{1}\right)\left(\underline{\left.\mathrm{F}\left(\mathrm{x}_{2}\right)\right)}\right.
\end{array}
$$

may not recurse down to a subtree.

Work on Every Node \Rightarrow Visit All Nodes

$$
F\left(S\left(x_{1}, x_{2}\right)\right) \rightarrow G\left(x_{1}\right)\left(F\left(x_{2}\right)\right) \quad \tau_{n}
$$

Nondeterministically delete every subtree!

$$
\begin{aligned}
& \operatorname{Del}\left(S\left(x_{1}, x_{2}\right)\right) \rightarrow \\
& \text { S12(Del } \left.\left.\left(x_{1}\right), \operatorname{Del}\left(x_{2}\right)\right) \text { // S1_(Del }\left(x_{1}\right)\right) \\
& \left./ / \quad \text { S_2(Del }\left(x_{2}\right)\right) / / S_{1}()
\end{aligned}
$$

$$
F\left(S 12\left(x_{1}, x_{2}\right)\right) \rightarrow G\left(x_{1}\right)\left(F\left(x_{2}\right)\right)
$$

At least one choice of nodeterminism "deletes correctly".

Work on Every Node \Rightarrow Work on Leaf

Erasing HTTs

$$
\begin{aligned}
F(S(x)) & \rightarrow G(x)(Z) \\
G(Z)(y) & \rightarrow y
\end{aligned}
$$

may be idle at leaves.

Work on Every Node \Rightarrow Work on Leaf

Erasing HITs

$$
\begin{aligned}
F(S(x)) & \rightarrow G(x)(Z) \\
G(Z)(y) & \rightarrow y
\end{aligned}
$$

Inline Expansion

Work on Every Node \Rightarrow Work on Monadic Nodes

Skipping HTTs

$$
\left.\begin{array}{l}
F(S(x))\left(y_{1}, y_{2}, y_{3}\right) \rightarrow F(x)\left(y_{2}, y_{3}, y_{1}\right) \\
F(Z)\left(y_{1}, y_{2}, y_{3}\right)
\end{array}\right)
$$

are good at juggling.

Work on Every Node

 \Rightarrow Work on Monadic Nodes
Skipping UTs

$F(S(x))\left(y_{1}, y_{2}, y_{3}\right) \rightarrow F(x)\left(y_{2}, y_{3}, y_{1}\right)$ $F(Z)\left(y_{1}, y_{2}, y_{3}\right) \quad \rightarrow$ Done $\left(y_{1}, y_{2}, y_{3}\right)$

Nondeterministic deletion again.
Remember how argugments would've been shuffled.

$$
\begin{aligned}
& \mathrm{F}(\mathrm{Z123})\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \rightarrow \text { Done }\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \\
& \mathrm{F}(\mathrm{Z231})\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \rightarrow \text { Done }\left(\mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{1}\right) \\
& \mathrm{F}(\mathrm{Z312})\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \rightarrow \text { Done }\left(\mathrm{y}_{3}, \mathrm{y}_{1}, \mathrm{y}_{2}\right)
\end{aligned}
$$

Simple Arithmetic

- Input size = \#leaf + \#monadic + \#others
- For each leaf on the input, generate $\geqq 1$ node.
- For each monadic node, generate $\geqq 1$ node.
- Thus, \#leaf + \#monadic \leqq Output size.
- For any tree, \#others < \#leaf \leqq Output size.
- Add: \#leaf + \#monadic + \#others \leqq Output size*2
- So, Input size < Output Size * 2

Work on Nodes with Rank-2,3,...

- Input size < Output Size * 2
$\operatorname{Fr}\left(\operatorname{Bin}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)(\mathrm{y}) \rightarrow \operatorname{Fr}\left(\mathrm{x}_{1}\right)\left(\mathrm{Fr}\left(\mathrm{x}_{2}\right)(\mathrm{y})\right)$
$\operatorname{Fr}(A)(y) \rightarrow A(y)$
$\operatorname{Fr}(\mathrm{B})(\mathrm{y}) \rightarrow \mathrm{B}(\mathrm{y})$

This bound is sufficient for deriving the results, but we can improve this to Input size \leqq Output Size, by deterministic deletion of leaves + inline expansion.

Done!

$$
\tau_{\text {del }}^{\prime} ; \tau_{\mathrm{n}}^{\prime}
$$

Summary

- Order-n HTT \rightarrow (Order-1 HTT) ${ }^{\text {n }}$
- Garbage Free Form
- L(Safe-HORS) is context-sensitive.
- Future Direction

- Extend it to Unsafe HTT
- Or, use it for proving safe $\subsetneq u n s a f e$

