# **Expressive Power of Safe HORS**

*Examined Through* Decomposition of Higher Order Programs to Garbage Free 1<sup>st</sup> Order Form

## Kazuhiro Inaba

1

Joint work with Sebastian Maneth

at *Shonan Meeting* on Automated Techniques for Higher-Order Program Verification 2011

## Background

 HORS (Higher Order Recursion Scheme) is very powerful and expressive.

n-EXPTIME hard problems!

Computational Complexity w.r.t. Grammar Size and Data Size

- MSO on words/trees:
  - Emptiness checking is non elementary (HYPEREXP) for the size of the formula.
  - The class of languages it represents is regular.
    - O(n) time, O(1) space membership wrt the word length

"MSO on words is a verrrrrrrry concise representation for relatively simple languages."

## How about HORS?

#### • HORS:

- Emptiness, Model Checking, Containment by Regular Languages, ... are n-EXPTIME hard.
- What is known about the languages it describes?
  - The class of languages it represents is ????.
  - ???? time, ???? space membership wrt the word length.

# [Greibach 70]

Aho and Ullman [3] have shown that the indexed languages can be characterized by AFAs whose data structure is a pushdown store of pushdown stores, with an added duplicate order which replicates the topmost store. They call these degree 2 pushdown stores and show that this idea can be extended to degree n, for any n, and that all these families have decidable emptiness problems and are contained in the context-sensitive languages.

3. A. V. Aho and J. Ullman, private communication.

# Today's talk verifies the statement (even for wider class of languages).

[Gr70] S. A. Greibach, "Full AFLs and Nested Iterated Substitution", Inf. Ctrl. 16

## Our Approach



If they are at most of size M at any point, O(M) space &  $O(2^{M})$  time.

## Outline of This Talk

- Target Language

   Higher-order Tree Transducers
- 1<sup>st</sup>-order Decomposition

   Sketch of the construction
- Garbage Free Form
  - Derived consequences
  - Sketch of the construction





# HTT [Engelfriet&Vogler 88]

Higher-order "single-input" "safe" tree transducer

Mult :: Tree  $\rightarrow$  Tree  $Mult(Pair(x_1, x_2))$  $\rightarrow$  Iter(x<sub>1</sub>)(Add(x<sub>2</sub>))(Z) Iter :: Tree  $\rightarrow$  (Tree  $\rightarrow$  Tree)  $\rightarrow$  Tree  $\rightarrow$  Tree  $Iter(S(x))(f)(y) \rightarrow Iter(x)(f)(f(y))$ Iter(Z)(f)(y)→ y Add :: Tree  $\rightarrow$  Tree  $\rightarrow$  Tree  $Add(S(x))(y) \rightarrow Add(x)(S(y))$ → y Add(Z)(y)

# HTT

- Set of mutually recursive functions
  - Defined in terms of induction on a single input tree
    - Input trees are always consumed, not newly constructed
    - Output trees are always created, but not destructed
  - Rest of the parameters are ordered by the order
    - Multiple parameters of the same order is ok but in uncurried form



## HTT

#### Nondeterminism (# and $\bot$ )

In this talk, evaluation strategy is unrestricted (= call-by-name). But call-by-value can also be dealt with.

# HTT

- Notation: **n-HTT** 
  - is the class of Tree→Tree functions representable by HTTs of order  $\leq$  n.
  - -{Subseq} is 0-HTT, {Mult, Iter, Add}∈2-HTT

| P | Subseq :: Tree → Tree                                                                      |          |
|---|--------------------------------------------------------------------------------------------|----------|
| C |                                                                                            | 9        |
| P | Mult :: Tree $\rightarrow$ Tree                                                            |          |
|   | Iter :: Tree $\rightarrow$ (Tree $\rightarrow$ Tree) $\rightarrow$ Tree $\rightarrow$ Tree | <u>.</u> |
|   | Add :: Tree $\rightarrow$ Tree $\rightarrow$ Tree                                          | J        |

## Order-n to Order-1

THEOREM [EV88] [EV86]

# (n-HTT) $\subseteq$ (1-HTT)<sup>n</sup>

n-th order tree transducer is representable by a n-fold composition of  $1^{st}$ -order tree transducers. ("= or  $\subseteq$  ?" is left open, as far as I know.)

[EV86] J. Engelfriet & H. Vogler, "Pushdown Machines for Macro Tree Transducers", *TCS 42* [EV88] –, "High Level Tree Transducers and Iterated Pushdown Tree Transducers", *Acta Inf. 26* 

## Proof: n-HTT = 1-HTT • (n-1)-HTT

#### Idea:

Represent 1<sup>st</sup>-order term Tree→Tree by a Tree.

$$\begin{array}{c} F :: Tree \rightarrow Tree \\ F(Z)(y) \xrightarrow{\bullet} S(S(y)) \end{array} \begin{array}{c} F :: Tree \rightarrow Tree \\ F(Z) \xrightarrow{\bullet} S(S(Y)) \end{array} \end{array}$$

Represent 1<sup>st</sup>-order application symbolically, too.

$$\underbrace{] \dots \rightarrow F(x)(Z) } \underbrace{] \dots \rightarrow @(F(x), Z) }$$

# Proof: n-HTT = 1-HTT • (n-1)-HTT

Represent 1<sup>st</sup>-order things symbolically.

 $F :: Tree \rightarrow Tree$  $F(Z) \implies S(S(Y))$ 

Then a 1-HTT performs the actual "application".

Eval(@(f, b))(y) → Eval(f, Eval(b)(y))
Eval(Y)(y) → y
Eval(S(x))(y) → S(Eval(x)(y))
Eval(Z)(y) → Z





## Why That Easy

• Relies on the **ordered-by-order** condition.

- No variable renaming is required! [Blum&Ong 09]

[BO09] W. Blum and C.-H. L. Ong, "The Safe Lambda Calculus", LMCS 5

## Now, Decomposed. 1-HTT<sup>n</sup> n-HTT τ<sub>1</sub> τ2 τ λλλ

18

#### Next, Make Intermediate Trees Small.



THEOREM [I. & Maneth 08] [I. 09]<sup>(+ improvement)</sup>

# $\forall \tau_1, ..., \tau_n \in 1\text{-HTT}, \exists \tau'_{del} \in 0\text{-LHTT}, \tau'_1, ..., \tau'_n \in 1\text{-HTT},$ for any $(\tau_n \circ ... \circ \tau_1)(s) \ni t$ , there exist $\tau'_{del}(s) \ni s_0, \tau'_i(s_i) \ni s_{i+1}, |s_i| \leq |s_{i+1}|, s_n = t$ .



[IM08] K. Inaba & S. Maneth, "The complexity of tree transducer output languages", FSTTCS

[Inaba09] K. Inaba, "Complexity and Expressiveness of Models of XML Transformations", Dissertation

#### **Consequences : Range Membership**

Membership problem for the class **Range(1-HTT**<sup>n</sup>) of languages is • in DLINSPACE

In NP

That is, given  $(\tau_n \circ \dots \circ \tau_1)$  and t, we can determine

" $\exists s. (\tau_n \circ ... \circ \tau_1)(s) \ni t$ " in O( f( $|\tau_1|+...+|\tau_n|$ ) |t|) space and in O( g( $|\tau_1|+...+|\tau_n|$ ) poly(|t|)) nondeterministic time. Consequences : Range Membership

Membership problem for the class **Range(1-HTT**<sup>n</sup>) of languages is • in DLINSPACE

τ<sub>del</sub>

in NP

#### Proof

Guess (in NP) or exhaustively try (in DLINSPACE) all the intermediate trees:  $s_0 \dots s_{n-1}$ .

Then check  $Range(\tau'_{del}) \ni s_0$  and  $\tau'_i(s_i) \ni s_{i+1}$ , both turn out to be feasible in DLINSPACE  $\cap$  NP.

**c'**n

τ'2

S₁

#### **Consequences : Range Membership**

Membership problem for the class **Range(1-HTT**<sup>n</sup>) of languages is • in DLINSPACE

In NP

COROLLARY

Higher-order safe recursion scheme, also known as OI-hierarchy, HO-PDA language, Maslov hierarchy, generalized indexed language, etc., is Context-Sensitive.



#### **Consequences : Linear-Size Inverse**

COROLLARY (by our constructive proof) Right inverse of 1-HTT<sup>n</sup> is computable in DLINSPACE  $\cap$  NP.

#### How to Construct the "Garbage-Free" Form

Make each 1-HTT "productive"



#### How to Construct the "Garbage-Free" Form

Make each 1-HTT "productive" by separating its "deleting" part



#### How to Construct the "Garbage-Free" Form

Make each 1-HTT "productive" by separating its "deleting" part, and fuse the deleter to the left [En75,77][EnVo85][EnMa02]





## Key Part

Separate the "deleting" transformation



# Key Part

### Slogan: Work on every node

 $(\tau'_n \text{ must generate at least one node for each input node})$ 





## Work on Every Node $\Rightarrow$ Visit All Nodes

#### **Deleting HTTs**

$$G(Z)(y_1) \rightarrow Z / y_1$$

$$F(S(x_1,x_2)) \rightarrow F(x_1)$$

$$\int E(x_2)$$

$$\int G(x_1)(F(x_2))$$

#### may not recurse down to a subtree.

### Work on Every Node $\Rightarrow$ Visit All Nodes

Nondeterministically delete every subtree!

Del(S(x<sub>1</sub>,x<sub>2</sub>)) →
Sl2(Del(x<sub>1</sub>),Del(x<sub>2</sub>)) // Sl\_(Del(x<sub>1</sub>))
// S\_2(Del(x<sub>2</sub>)) // S\_()

At least one choice of nodeterminism "deletes correctly".

$$F(S_1(x_1, x_2)) \rightarrow G(x_1)(F(x_2))$$

$$F(S_1(x_1)) \rightarrow G(x_1)(\bot)$$

$$F(S_2(x_2)) \rightarrow \bot$$

$$F(S_(1)) \rightarrow \bot$$

$$T'_n$$

 $F(S(x_1,x_2)) \rightarrow G(x_1)(F(x_2))$ 

## Work on Every Node $\Rightarrow$ Work on Leaf

#### Erasing HTTs $F(S(x)) \rightarrow G(x)(Z)$ $G(Z)(y) \rightarrow y$ $T_n$

#### may be idle at leaves.

## Work on Every Node $\Rightarrow$ Work on Leaf



## Work on Every Node ⇒ Work on Monadic Nodes



are good at juggling.

Work on Every Node ⇒ Work on Monadic Nodes

Skipping HTTs

$$F(S(x))(y_1, y_2, y_3) \rightarrow F(x)(y_2, y_3, y_1)$$
  
F(Z)(y\_1, y\_2, y\_3) \rightarrow Done(y\_1, y\_2, y\_3)

Nondeterministic deletion again.

Remember how argugments would've been shuffled.

$$F(Z123)(y_1, y_2, y_3) \rightarrow Done(y_1, y_2, y_3)$$
  

$$F(Z231)(y_1, y_2, y_3) \rightarrow Done(y_2, y_3, y_1)$$
  

$$F(Z312)(y_1, y_2, y_3) \rightarrow Done(y_3, y_1, y_2)$$
  

$$T'_n$$

## Simple Arithmetic

- Input size = #leaf + #monadic + #others
  - For each leaf on the input, generate  $\geq 1$  node.
  - For each monadic node, generate  $\geq 1$  node.
  - Thus, #leaf + #monadic  $\leq$  Output size.
- For any tree, #others < #leaf ≤ Output size.</li>
- Add: #leaf + #monadic + #others ≤ Output size\*2
- So, Input size < Output Size \* 2

## Work on Nodes with Rank-2,3,...

Input size < Output Size \* 2</li>

$$Fr(Bin(x_1,x_2))(y) \rightarrow Fr(x_1)(Fr(x_2)(y))$$
  

$$Fr(A)(y) \rightarrow A(y)$$
  

$$Fr(B)(y) \rightarrow B(y)$$

This bound is sufficient for deriving the results, but we can improve this to Input size  $\leq$  Output Size, by deterministic deletion of leaves + inline expansion.

## Done!





### Summary

- Order-n HTT  $\rightarrow$  (Order-1 HTT)<sup>n</sup>
- Garbage Free Form
   L( Safe-HORS ) is context-sensitive.
- Future Direction
  - Extend it to Unsafe HTT
  - Or, use it for proving safe ⊊ unsafe



40