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―Complexity of Output Languages‖

 Given…
 A language

L  ⊆ TΣ (Trees over Σ)

 A relation (nondeterministic translation)
τ ⊆ TΣ×TΔ (from TΣ to TΔ)

 What is the complexity of the language
τ(L) ⊆ TΔ ?

(i.e., for t ∈ TΔ, how is it computationally hard
to determine whether t ∈ τ(L) or not?)



Classic Results

 τ:  Program of Turing-Machine
 Undecidable

 L : Regular String Language

 τ: Nondeterministic Finite State Transduction
 τ(L) is regular!

  The membership of τ(L) is solved in
O(n) time, O(1) space

 Corollary: for τ∈ Finitely Many Compositions of 
Nondeterministic FST, τ(L) is regular



Trees?

 L : Regular Tree Language

 τ: Finitely Compositions of

Nondet. Finite-State Tree Transducers

 Beyond Regular Tree Language

 (Intuitively…) Due to Copying

 τ(t) → x(t, t)  is an instance of FSTT

 In DSPACE(n) [Baker1978]

 i.e., Deterministic Context-Sensitive



Recent Result [Maneth2002, FSTTCS]

 L : Regular Tree Language

 τ: Finite Compositions of

Total Deterministic Macro Tree Transducers

 == Tree Transducers extended with ―accumulating 

parameters‖ for each state

 In DSPACE(n)

 Still, Deterministic Context-Sensitive



Today‘s Target!

 L : Regular Tree Language

 τ: Finite Compositions of

Nondeterministic Macro Tree Transducer

 Is it still context-senstive? – Yes. NSPACE(n)

What about the time complexity? – NP-complete



Outline

 What is/Why Macro Tree Transducers?

 Review of the Proof for Deterministic Case

 ―Garbage-free‖ Lemma

 ―Translation Membership‖ Problem

 Summary



Macro Tree Transducer (MTT)

 Q : Finite Set of States

 q0:  Initial State

 Σ : Input Alphabet

 Δ : Output Alphabet

 R : Set of Rewrite Rules of form:

<q, σ(x1,…,xk)>( y1,…, ym )  r

where r ::= δ(r, …, r) | <q, xi>(r, …, r) | yj



Example of an MTT
 <q0, a(x)>()  f( <q1, x>( a(e) ), <q2,x>() )

 <q0, b(x)>()  f( <q1, x>( b(e) ), <q2,x>() )

 <q1, a(x)>(y)  <q1, x>( a(y) ) )

 <q1, b(x)>(y)  <q1, x>( b(y) ) )

 <q1, e>(y)  y

 <q2, a(x)>()  a( <q2,x>() )

 <q2, b(x)>()  b( <q2,x>() )

 <q2, e>()  e
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<q0, a(b(b(e))>()

→ f( <q1,b(b(e))>(a(e)), <q2,a(e)>() )

→ f( <q1,b(e)>(a(a(e)), <q2,a(e)>() )

→ f( <q1,e>(a(a(a(e))), <q2,a(e)>() ) → …



(Choice of Semantics)

 Functional Programming + Laziness + 
Nondeterminism 

 We take the Runtime-Choice Semantics:
 <coin, a>  0 | 1

 <twocoins, a>(y)  c(y, y)

 <twocoins, a>( <coin,a>() ) *
{ c(0,0), c(0,1), c(1,0), c(1,1) }

 Because of its composability:  MTT ; LT ⊆ MTT



MTT*(REGT)
= PTT*(REGT)

= ATT*(REGT)

= …

DtMTT*(REGT)

T*(REGT)

Regular

IO-Hierarchy

Context Free

OI-Hierarchy

MSOTT*(REGT)



Review:
DSPACE(n) Membership for Det. MTTs

 Given a (fixed) pair of

 Input regular language L and

Composition sequenceτ1 ; … ; τn of

total deterministic mtts

 and a tree t,

 How can we test   t ∈ (τ1 ; … ; τn )(L)

in linear space wrt |t|?



Review:

DSPACE(n) Membership for Det. MTTs

 Guess the input s ∈ L

 Calculate (τ1 ; … ; τn )(s)

 If (τ1 ; … ; τn )(s) = t, then t is in the output language!

 Otherwise, try another input tree s

Is this a possible 

output from

τ1 ; … ; τn ?

τ1 τ2 τn

ts

Guess an input: s

s1

Compute s1:=τ1(s)

s2

Compute s2:=τ2(s)

Sn-1

Compute sn-1

sn

Compute sn

=

?



Review:

DSPACE(n) Membership for Det. MTTs

 In order to carry out the algorithm in DSPACE(|t|) …
 The sizes |s|, |s1|, |s2|, …, |sn| must be linearly bounded by |t|

 i.e., there must be a constant c independent from t s.t. |s| ≦ c|t|

 Each step τ of the computation must be done in linear space

The translation must 

have 

‗no garbage‘!

τ1 τ2 τn

ts s1 s2
Sn-1 sn

=

?



Review:

DSPACE(n) Membership for Det. MTTs

 ‗Garbage-Free‘ Lemma
 For any input language L and mttsτ1, …, τn, there 

exists L‘ and τ‘1, …, τ‘n such that
(τ1;…;τn)(L) == (τ‘1;…;τ‘n)(L‘)

and every τ‘i is ‗non-deleting‘ ( |in| ≦ 2|out| )

 Linear Time (and Space) Computation
 For any total deterministic mtt τand a tree s,

τ(s) can be computed in time O( |s| + |τ(s)| )
(already known as a folklore result)



NSPACE(n)/NP Output Membership for 

Nondeterministic MTTs

 Guess the input s ∈ L
and all the intermediate trees s1, …, sn-1

 Check whether
(s,s1)∈τ1, (s1,s2)∈τ2, …, (sn-1, t) ∈τn

 If it is, then t is in the output language!

 Otherwise, try another s, s2, …, sn-1

τ1 τ2 τn

ts s1 s2
Sn-1

∈∈ ∈



Key Lemmas

 ‗Garbage-Free‘ Lemma—Nondet. Version

 NP/NSPACE(n) ―Translation Membership‖

for a single mtt translation



Key Lemma (1):

‗Garbage-Free‘ Lemma—Nondet. Version

 Basic Idea

―Factor out‖ the deletion

τ1 ; τ2 == τ1 ;  (D ;τ‘2)

== (τ1 ; D) ; τ‘2

== ρ1; τ‘2

Decompose τ2

to ‗deleting part‘ D

and ‗nondeleting‘ τ‘2

Associativity

Compose τ1 with D



Three Types of Deletion

 ―Erasure‖
 <q,σ>(y1, y2)  y1

 No new output node is generated at this σ node. Only 
returning its parameter.

 ―Input-Deletion‖
 <q, σ(x1, x2)>()  δ( <q, x1>() )

 Discarding the ―x2‖ subtree!

 ―Skipping‖
 <q, σ(x1)>()  <q, x1>()

Occurs only at monadic node. No new output is 
generated here. Just going down to its child node.

Lemma:

If no erasing, input-deleting, or

skipping rule is used during the

computation, then |in| ≦ 2|out|



Eliminating

The Three Types of Deletion 

 Achieved by heavily manipulating the rules
 For details, please consult the paper

 One of the difficulties compared to the 
deterministic case: Inline-Expansion
 <q, a>(y)        y

 <q, b(x1,x2)>  c( <p,x1>(<q,x2>(e)) )

(Assume we know that ‗b‘‘s child is always ‗a‘)

 <q, b(x1,x2)>  c( <p,x1>( e ) )



With Nondeterminism,

Inline-Expansion is Not Easy

 <q, a>()      e

 <q, a>()      f

 <q, b(x)>()  <p,x>( <q,x>() )

 <p, a>(y)    c(y, y)

 <q, a>()      e

 <q, a>()      f

 <q, b(x)>()  <p,x>( e )

 <q, b(x)>()  <p,x>( f )

 <p, a>(y)     c(y, y)

Different

Translation!

<q, b(a)>()

→ <p,a>( <q,a>() )

→ c( <q,a>(), <q,a>() )

→ c( e, f )

<q, b(a)>()

→ <p,a>(e) → c( e, e )

or

→ <p,a>(f) → c( f, f )



Solution:

―MTT with Choice and Failure‖

 We have extended MTTs with ―inline‖ 

nondeterminism

Allows inline-expansion for free!

Actually, we prove the output language 

complexity for mtt-cfs

 <q, a>()      e

 <q, a>()      f

 <q, b(x)>()  <p,x>( +(e, f) )

 <p, a>(y)     c(y, y)

<q, b(a)>()

→ <p,a>( +(e,f) )

→ c( +(e,f), +(e,f) )

→ c( e, f )



Key Lemma (2):

―Translation Membership‖ of single τi

 Given a pair (si-1, si) of trees,

we can determine whether (si-1, si) ∈ τi

in linear-space & polynomial time wrt |si-1 |+|si|

in nondet. Turing machine

 Naively Applying the folklore deterministic 

computation takes O(|si-1 |+ |τ(si-1)|) time/space

 New Idea is Necessary



―Translation Membership‖ of single τi

 Naively Applying the Linear Time Computation 
for Deterministic MTTs:
 Fails.

 It relied on the decompostion of an MTT into Linear
MTTs (each input variable xi occurs at most once in 
each rule),

…and the fact that deterministic linear MTTs read 
each input node at most once,

…which allows to compress the output tree as a DAG
for both saving space and sharing computations

OK. Similar 

decomposition 

works also for

Nondet. MTTs

Bad. Nondet. 

Linear MTTs may 

read each node 

multiple timesNeed More 

Sophisticated 

Compression!



Example: Linear Nondet. MTT

Reading Some Node Twice

 <q, b(x1,x2)>()  <p,x1>( <q,x2>() )

 <q, a>()  e

 <q, a>()  f

 <p, a>(y)  g(y, y)



Solution: Compression

by Context-Free Tree Grammar

 The set all outputs τi(si-1)  of an MTT  can 

be represented by a CFTG of size 

proportional to |si-1| [MB04]

τi

Si-1 si

τi(si-1)

∈

 Navigation (up,1stchild, nextsibl) on the compressed 

representation is efficient for linear mtts



Summary

 Composition sequence τ1 ; …; τn of mtts can be 
converted to an equivalent ‗garbage-free‘
composition

 Translation Membership of any mtt is in 
NP/NSPACE(n)

  Altogether, the output language complexity of 
mtt-compositions is NP/NSPACE(n)
 Corollary: OI-hierarchy, PTT*(REGT), ATT*(REGT), 

… is in NP/NSPACE(n)

 Current Status (Unpublished): NSPACE(n)DSPACE(n)


