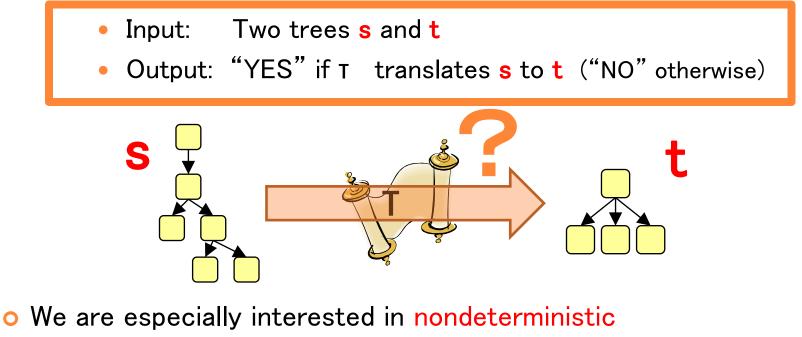
THE COMPLEXITY OF TRANSLATION MEMBERSHIP FOR MACRO TREE TRANSDUCERS

Kazuhiro Inaba (The University of Tokyo) Sebastian Maneth (NICTA & University of New South Wales)

PLAN-X 2009, Savannah

TRANSLATION MEMBERSHIP?

 "Translation Membership Problem" for a tree-to-tree translation T :



translations where T (s) is a *set* of trees

(i.e., the translation membership problem asks "t \in T (s)?")

APPLICATIONS

o Dynamic assertion testing / Unit testing

```
assert(
    run_my_xslt( load_xml("test-in.xml") )
    == load_xml("test-out.xml") );
```

- How can we check the assertion efficiently?
- How can we check it when the translation depends on external effects (randomness, global options, or data form external DB…)?
 → "Is there a configuration realizes the input/output pair?"
- Sub-problem of larger decision problems
 - Membership test for the domain of the translation [Inaba&Maneth 2008]

KNOWN RESULTS ON COMPLEXITIES OF TRANSLATION MEMBERSHIP

- If τ is a Turing Machine
 ... Undecidable
- If T is a finite composition of top-down/bottom-up tree transducers
 ... Linear space [Baker 1978]
 → Cubic Time [This Work]
- If T is a finite composition of deterministic macro tree transducers
 ... Linear time (Easy consequence of [Maneth 2002])

OUTLINE

- Macro Tree Transducers (MTTs)
 - IO and OI –– Two Evaluation Strategies
- MTT_{OI} Translation Membership is NP-complete
 - · · · also for finite compositions of MTT_{IO}/MTT_{OI} 's
- MTT_{IO} Translation Membership is in PTIME!!
 - ··· also for several extensions of MTT_{IO}!!
- o Conclusion and Open Problems

MACRO TREE TRANSDUCER (MTT)

start($A(x_1)$) \rightarrow double(x_1 , double(x_1 , E))

double($A(x_1)$, y_1) \rightarrow double(x_1 , double(x_1 , y_1)) double(B, y_1) \rightarrow F(y_1 , y_1) double(B, y_1) \rightarrow G(y_1 , y_1)

• An MTT M = (Q, q₀, Σ , Δ , R) is a set of first-order functions of type Tree(Σ) * Tree(Δ)^k \rightarrow Tree(Δ)

• Each function is inductively defined on the 1st parameter

- Dispatch based on the label of the current node
- Functions are applied only to the direct children of the current node
- Not allowed to inspect other parameter trees

(M)TT IN THE XML WORLD

- o Simulation of XSLT, XML-QL [Milo&Suciu&Vianu 2000]
 - Expressive fragment of XSLT and XML-QL can be represented as a composition of pebble tree transducers (which is a model quite related to macro tree transducers)
- TL XML Translation Language [MBPS 2005]
 - A translation language equipping Monadic Second Order Logic as its query sub-language, representable by 3 compositions of MTTs.
- Exact Type Checking [MSV00, Tozawa 2001, Maneth&Perst&Seidl 2007, Frisch&Hosoya 2007, …]
- o Streaming [Nakano&Mu 2006]
- Equality Test [Maneth&Seidl 2007]

o ...

IO AND OI

double($A(x_1)$, y_1) \rightarrow double(x_1 , double(x_2 , y_1)) double(B, y_1) \rightarrow F(y_1 , y_1) double(B, y_1) \rightarrow G(y_1 , y_1)

 IO (inside-out / call-by-value): evaluate the arguments first and then call the function

or

→ double(B, G(E, E))
→ F(G(E, E), G(E, E))
or → G(G(E, E), G(E, E))

IO AND OI

double($A(x_1)$, y_1) \rightarrow double(x_1 , double(x_2 , y_1)) double(B, y_1) \rightarrow F(y_1 , y_1) double(B, y_1) \rightarrow G(y_1 , y_1)

• OI (outside-in / call-by-name): call the function first and evaluate each argument when it is used $start(A(B)) \rightarrow double(B, double(B, E))$ \rightarrow F(double(B, E), double(B, E)) \rightarrow F(F(E,E), double(B, E)) \rightarrow F(F(E,E), F(E,E)) \rightarrow F(F(E,E), G(E,E)) \rightarrow F(G(E,E), double(B, E)) \rightarrow F(G(E,E), F(E,E)) \rightarrow F(G(E,E), G(E,E)) → G(double(B, E), double(B, E)) \rightarrow G(F(E,E), double(B, E)) \rightarrow G(F(E,E), F(E,E)) \rightarrow G(F(E,E), G(E,E)) \rightarrow G(G(E,E), double(B, E)) \rightarrow G(G(E,E), F(E,E)) \rightarrow G(G(E,E), G(E,E))

IO OR OI?

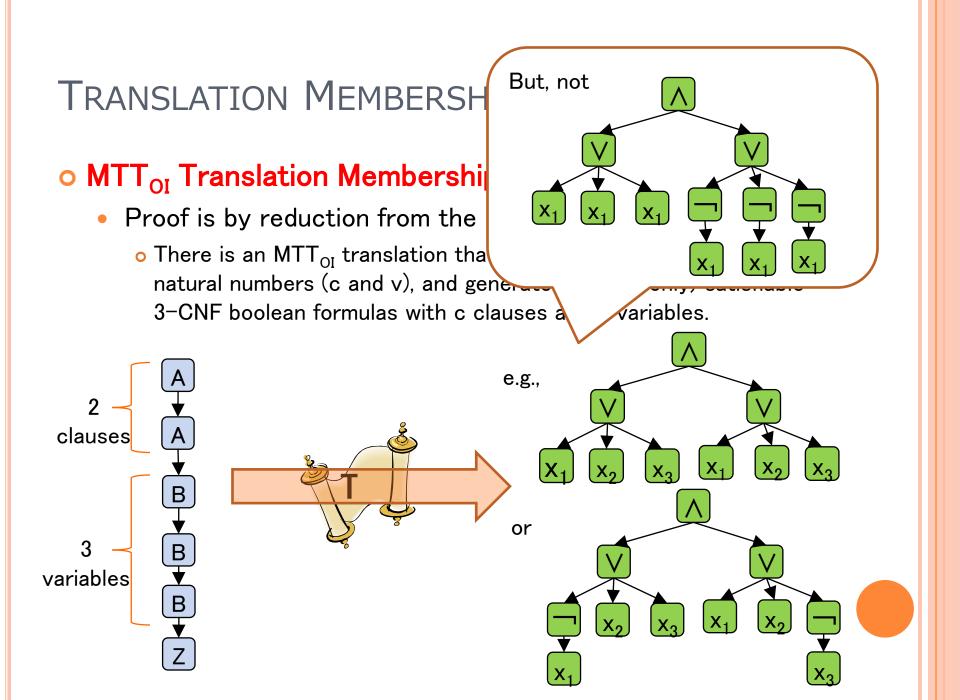
• Why we consider two strategies?

• IO is usually a more precise approximation of originally deterministic programs:

// f(A(x))	→ if ≪complex_choice≫ then e1 else e2
f(A(x))	→ e1
f(A(x))	→ e2
g(A(x))	\rightarrow h(x, f(x))
h(<mark>A(</mark> x), y)	\rightarrow B(y, y)

- OI has better closure properties and a normal form:
 - For a composition sequence of OI MTTs, there exists a certain normal form with a good property, while not in IO. (explained later)

RESULTS



TRANSLATION MEMBERSHIP FOR MTT_{OI}

• **'Path-linear' MTT_{OI} Translation Membership is in NP** [Inaba&Maneth 2008]

Path-linear ⇔ No nested state calls to the same child node

f(A(x_1 , x_2)) \rightarrow g(x_1 , g(x_2 , B)) // ok f(A(x_1 , x_2)) \rightarrow g(x_1 , g(x_1 , B)) // bad f(A(x_1 , x_2)) \rightarrow h(x_1 , g(x_2 , B), g(x_2 , C)) // ok

Proof is by the "compressed representation"

• The set T (s) can be represented as a single "sharing graph" (generalization of a DAG) of size O(|s|) [Maneth&Bussato 2004]

• Navigation (up/1st child/next sibling) on the representation can be done in P only if the MTT T is a path-linear.

o Corollary: MTT_{OI} Translation Membership is in NP

Proof is by the 'Garbage-Free' form in the next page...

K-COMPOSITIONS OF MTTS:

TRANSLATION MEMBERSHIP FOR $MTT_{OI}{}^{\rm K}$ and $MTT_{IO}{}^{\rm K}$

o MTT_{OI}^{k} (k \geq 1) Translation Membership is NP-complete

Proof is by the Garbage-Free Form [Inaba&Maneth 2008]

Any composition sequence of MTT_{OI}'s $T = T_1; T_2; \dots; T_k$ can be transformed to a "Garbage-Free" sequence of path-linear MTT_{OI}'s $T = \rho_1; \rho_2; \dots; \rho_{2k}$ where for any (s,t) with t $\in T$ (s), there exists intermediate trees $s_1 \in \rho_1(s), s_2 \in \rho_2(s_1), \dots, t \in \rho_{2k}(s_{2k-1})$ such that $|s_i| \leq c |t|$

 \rightarrow by NP-oracle we can guess all s_i's

o MTT_{IO}^{k} (k \geq 2) Translation Membership is NP-complete

• Proof is by Simulation between IO and OI [Engelfriet&Vogler 1985] • $MTT_{OI} \subseteq MTT_{IO}$; MTT_{IO} and $MTT_{IO} \subseteq MTT_{OI}$; MTT_{OI}

MAIN RESULT: TRANSLATION MEMBERSHIP FOR MTT_{IO}

o MTT_{IO} Translation Membership is in PTIME (for an mtt with k parameters, O(n^{k+2}))

 Proof is based on the Inverse Type Inference [Engelfriet&Vogler 1985, Milo&Suciu&Vianu 2000]

For an MTT τ and a tree t, the inverse image $\tau^{-1}(t)$ is a regular tree language

o Instead of "t \in T (s)", check "s \in T ⁻¹(t)"

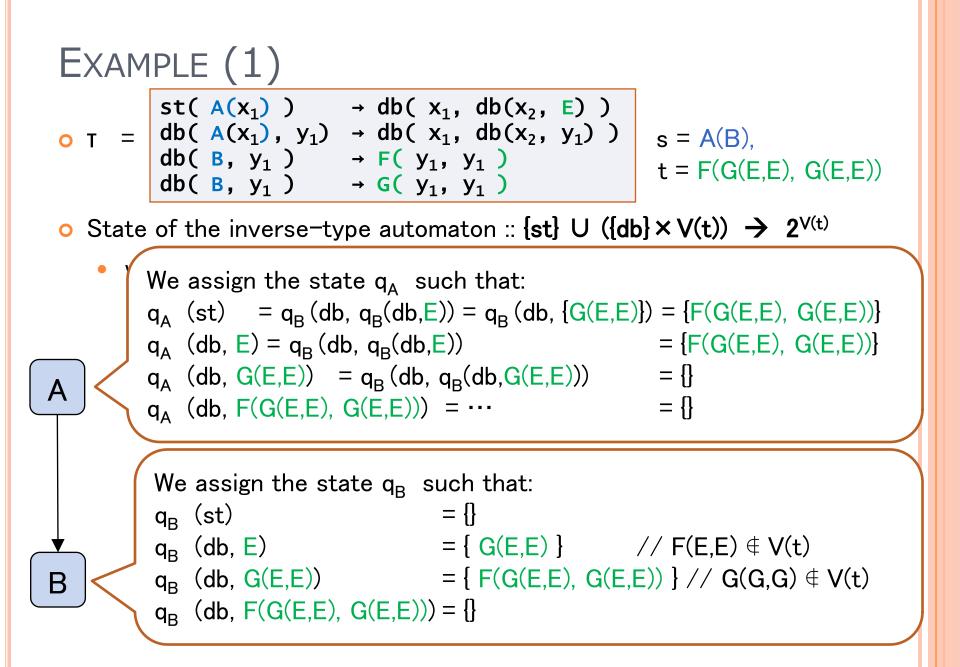
• First, construct the bottom-up tree automaton recognizing T $^{-1}(t)$

• Then, run the automaton on s.

PITFALL

The automaton may have 2^{|t|} states in the worst case.

PTIME SOLUTION Do not fully instantiate the automaton. Run it while constructing it on-the-fly.



$$\begin{array}{l} \label{eq:stample} \text{EXAMPLE (2)} \\ \bullet \ \mbox{T} = \begin{bmatrix} st(\ A(x_1)\) & + \ db(\ x_1, \ db(x_1, \ E)\) \\ db(\ A(x_1), \ y_1) & + \ db(\ x_1, \ db(x_1, \ y_1)\) \\ db(\ B, \ y_1\) & + \ F(\ y_1, \ y_1\) \\ db(\ B, \ y_1\) & + \ G(\ y_1, \ y_1\) \\ db(\ B, \ y_1\) & + \ G(\ y_1, \ y_1\) \\ db(\ B, \ y_1\) & + \ G(\ y_1, \ y_1\) \\ e^{A} \ (st) = \ q_B \ (db, \ q_B \ (db, E)) = \ q_B \ (db, \ \{G(E,E),F(E,E)\}) = \ \{I\ q_A \ (db, \ F(E,E)) & = \ q_B \ (db, \ q_B \ (db, \ G(E,E))\) \\ e^{A} \ (db, \ F(E,E)) & = \ q_B \ (db, \ q_B \ (db, \ F(E,E))) = \ \{I\ q_B \ (db, \ F(G(E,E),\ G(E,E)))\) \\ e^{A} \ (db, \ F(G(E,E),\ G(E,E))) & = \ \{I\ q_B \ (db, \ G(E,E))\) \\ e^{B} \ (db, \ G(E,E)) & = \ \{I\ (fd, G(E,E),\ F(E,E)\) \\ q_B \ (db, \ F(E,E)) & = \ \{I\ //\ F(F,F)\ and \ G(G(G,G)\ \notin V(t)\ q_B \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \\ e^{B} \ (db, \ F(G(E,E),\ F(E,E))) & = \ \{I\ //\ F(F,F)\ and \ G(F,F)\ \notin V(t)\ q_B \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \\ e^{B} \ (db, \ F(G(E,E),\ F(E,E))) & = \ \{I\ //\ \\ e^{B} \ (db, \ F(G(E,E),\ F(E,E))) & = \ \{I\ //\ \ F(F,F)\ and \ G(F,F)\ \notin V(t)\ \ q_B \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E))) & = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(G(E,E),\ F(E,E)))) = \ \{I\ //\ \ e^{B} \ (db, \ F(E,E))) = \ \{I\ //\ \ e^{B} \ (db, \ F(E,E))) = \ \{I\ //\ \ e^{B} \ (db, \ F(E,E))) = \ \{I\ //\ \ e^{B} \ (db, \ F(E,E))) = \ \{I\ //\ \ e^{B} \ (db, \ F(E,E))) = \ \{I\ //\ \ e^{B} \ (db, \ F(E,E))) = \ \{I\ //\ \ e^{B} \ (db, \ F(E,E))) = \ \{I\ //\ \ e^{B} \ (db, \ F(E,E))) = \ \{I\ //\ \ e^{B} \ (db, \ F(E,E))) = \$$

NOTE

• Complexity:

- At each node of s, one function of type
 {st} ∪ ({db} × V(t)) → 2^{V(t)} is computed
- {st} \cup ({db} \times V(t)) \rightarrow 2^{V(t)} \equiv 2^{V(t) \times ({st} \cup ({db} \times V(t)))}
- Each function is of size O(|V(t)|²), which is computed per each node (O(|s|) times) (and, computation of each entry of the function requires O(|t|²) time) → O(|s| |t|⁴) time
- MTT_{OI} also has regular inverse image, but the inversetype automaton may have 2² t many states in the worst case
 - \rightarrow Computing even a single state requires EXPTIME

SEVERAL EXTENSIONS

As long as the inverse type is sufficiently small, we can apply the same technique.

o Variants of MTTs with PTIME Translation Membership

- MTT_{IO} with TAC-look-ahead
 - Rules are chosen not only by the label of the current node, but by a regular look-ahead and (dis)equality-check on child subtrees

Multi–Return MTT_{IO}

• Each function can return multiple tree fragments (tuples of trees)

f(A(x₁,x₂)) → let (z₁,z₂) = g(x₁) in D(z₁, C(z₂)) g(A(x₁,x₂)) → (f(x₁), f(x₂))

Finite-copying MTT_{OI}

• OI, but each parameter is copied not so many times.

CONCLUSION AND OPEN PROBLEMS

Complexity of Translation Membership is

- NP-complete for
 - MTT_{OI}^{k} (k \geq 1), MTT_{IO}^{k} (k \geq 2)
 - Higher-Order MTT, Macro Forest TT, …
- PTIME for
 - MTT_{IO} (+ look-ahead and multi-return)

o Open Problems

- MTT_{OI} with at most one accumulating parameter
 - Our encoding of SAT used 3 parameters, which actually can be done with 2. How about 1?
- MTT_{IO} with holes [Maneth&Nakano PLAN-X08]
 It is an extension of IO MTTs, but has more complex inverse-type.

THANK YOU!