The Complexity of Translation Membership for Macro Tree Transducers

Kazuhiro Inaba (The University of Tokyo) Sebastian Maneth (NICTA \& University of New South Wales)

Translation Membership?

- "Translation Membership Problem" for a tree-to-tree translation T :
- Input: Two trees s and t
- Output: "YES" if t translates s to t ("NO" otherwise)

- We are especially interested in nondeterministic translations where $\mathrm{T}(\mathrm{s})$ is a set of trees (i.e., the translation membership problem asks " $\mathrm{t} \in \mathrm{T}(\mathrm{s}) ?$?")

ApPLICATIONS

- Dynamic assertion testing / Unit testing

```
assert(
    run_my_xslt( load_xm1("test-in.xm1") )
        == load_xm1("test-out.xm1") );
```

- How can we check the assertion efficiently?
- How can we check it when the translation depends on external effects (randomness, global options, or data form external DB \cdots)?
- \rightarrow "Is there a configuration realizes the input/output pair?"
- Sub-problem of larger decision problems
- Membership test for the domain of the translation [Inaba\&Maneth 2008]

Known Results on

Complexities of Translation Membership

- If T is a Turing Machine
... Undecidable
- If T is a finite composition of top-down/bottom-up tree transducers
… Linear space [Baker 1978]
\rightarrow Cubic Time [This Work]
- If T is a finite composition of deterministic macro tree transducers
... Linear time (Easy consequence of [Maneth 2002])

OutLINE

- Macro Tree Transducers (MTTs)
- IO and OI -- Two Evaluation Strategies
- MTT ${ }_{\text {OI }}$ Translation Membership is NP-complete
- … also for finite compositions of $\mathrm{MTT}_{\mathrm{IO}} / \mathrm{MTT}_{\mathrm{OI}}$'s
- MTT $_{\text {IO }}$ Translation Membership is in PTIME!!
- \cdots also for several extensions of MTT $_{\text {IO }}$!!
- Conclusion and Open Problems

Macro Tree Transducer (MTT)

```
start( A( }\mp@subsup{\textrm{x}}{1}{}))->\mathrm{ ) double( }\mp@subsup{\textrm{x}}{1}{},\mathrm{ double(x ( 
```

double($\left.A\left(x_{1}\right), y_{1}\right) \rightarrow$ double $\left(x_{1}, \operatorname{double}\left(x_{1}, y_{1}\right)\right)$
double($\left.B, y_{1}\right) \rightarrow F\left(y_{1}, y_{1}\right)$ double($\left.B, y_{1}\right) \rightarrow G\left(y_{1}, y_{1}\right)$

- An MTT M $=\left(Q, q_{0}, \Sigma, \Delta, R\right)$ is a set of first-order functions of type $\operatorname{Tree}(\Sigma) * \operatorname{Tree}(\Delta)^{k} \rightarrow \operatorname{Tree}(\Delta)$
- Each function is inductively defined on the $1^{\text {st }}$ parameter
- Dispatch based on the label of the current node
- Functions are applied only to the direct children of the current node
- Not allowed to inspect other parameter trees

(M)TT in the XML World

- Simulation of XSLT, XML-QL [Milo\&Suciu\&Vianu 2000]
- Expressive fragment of XSLT and XML-QL can be represented as a composition of pebble tree transducers (which is a model quite related to macro tree transducers)
- TL - XML Translation Language [MBPS 2005]
- A translation language equipping Monadic Second Order Logic as its query sub-language, representable by 3 compositions of MTTs.
- Exact Type Checking [MSV00, Tozawa 2001, Maneth\&Perst\&Seidl 2007, Frisch\&Hosoya 2007, …]
- Streaming [Nakano\&Mu 2006]
- Equality Test [Maneth\&Seidl 2007]

IO AND OI

double $\left(A\left(x_{1}\right), y_{1}\right) \rightarrow \operatorname{double}\left(x_{1}, \operatorname{double}\left(x_{2}, y_{1}\right)\right)$ double $\left(B, y_{1}\right) \rightarrow F\left(y_{1}, y_{1}\right)$ double($\left.B, y_{1}\right) \rightarrow G\left(y_{1}, y_{1}\right)$

- IO (inside-out / call-by-value):
evaluate the arguments first and then call the function
$\operatorname{start}(A(B)) \rightarrow$ double(B, double($B, E)$)
\rightarrow double($B, F(E, E)$)
$\rightarrow F(F(E, E), F(E, E))$
or $\Rightarrow G(F(E, E), F(E, E))$
or
\rightarrow double($B, G(E, E)$)
$\rightarrow F(G(E, E), G(E, E))$ or $\Rightarrow G(G(E, E), G(E, E))$

IO AND OI

double($\left.A\left(x_{1}\right), y_{1}\right) \rightarrow$ double $\left(x_{1}\right.$, double $\left.\left(x_{2}, y_{1}\right)\right)$ double $\left(B, y_{1}\right) \rightarrow F\left(y_{1}, y_{1}\right)$ double($\left.B, y_{1}\right) \rightarrow G\left(y_{1}, y_{1}\right)$

- OI (outside-in / call-by-name): call the function first and evaluate each argument when it is used
$\operatorname{start}(A(B)) \rightarrow$ double($B, \operatorname{double}(B, E)$)
$\rightarrow F($ double (B, E), double (B, E))
$\rightarrow F(F(E, E), \operatorname{double}(B, E)) \rightarrow F(F(E, E), F(E, E))$ $\rightarrow F(F(E, E), G(E, E))$
$\rightarrow F(G(E, E), \operatorname{double}(B, E)) \rightarrow F(G(E, E), F(E, E))$
$\rightarrow F(G(E, E), G(E, E))$
$\rightarrow G($ double (B, $E)$, double (B, E))
$\rightarrow G(F(E, E), \operatorname{double}(B, E)) \rightarrow G(F(E, E), F(E, E))$
$\rightarrow G(F(E, E), G(E, E))$
$\rightarrow G(G(E, E), \operatorname{double}(B, E)) \rightarrow G(G(E, E), F(E, E))$
$\rightarrow G(G(E, E), G(E, E))$

IO OR OI?

- Why we consider two strategies?
- IO is usually a more precise approximation of originally deterministic programs:

$/ / f(A(x))$	\rightarrow if <complex_choice》 then e1 e1se e2
$\mathbf{f}(A(\mathbf{x}))$	$\rightarrow \mathbf{e 1}$
$\mathbf{f}(A(\mathbf{x}))$	$\rightarrow \mathbf{e 2}$
$\mathbf{g}(A(\mathbf{x}))$	$\rightarrow \mathbf{h}(\mathbf{x}, \mathbf{f}(\mathbf{x}))$
$\mathbf{h}(A(\mathbf{x}), \mathbf{y})$	$\rightarrow \mathbf{B}(\mathbf{y}, \mathbf{y})$

- OI has better closure properties and a normal form:
- For a composition sequence of OI MTTs, there exists a certain normal form with a good property, while not in IO. (explained later)

Results

TRANSLATION MEMBERSH - MTT $_{\text {oI }}$ Translation Membershi
 - Proof is by reduction from the
 - There is an MTT OI translation tha

 natural numbers (c and v), and gen $3-\mathrm{CNF}$ boolean formulas with c clauses a variables.

Translation Membership for MTT ${ }_{\text {oi }}$

- 'Path-linear' MTT ${ }_{\text {oI }}$ Translation Membership is in NP [Inaba\&Maneth 2008]
- Path-linear \Leftrightarrow No nested state calls to the same child node
$f\left(A\left(x_{1}, x_{2}\right)\right) \rightarrow g\left(x_{1}, g\left(x_{2}, B\right)\right) / /$ ok
$f\left(A\left(x_{1}, x_{2}\right) \rightarrow g\left(x_{1}, g\left(x_{1}, B\right)\right) / /\right.$ bad
$f\left(A\left(x_{1}, x_{2}\right)\right) \rightarrow h\left(x_{1}, g\left(x_{2}, B\right), g\left(x_{2}, C\right)\right) / /$ ok
- Proof is by the "compressed representation"
- The set T (s) can be represented as a single "sharing graph" (generalization of a DAG) of size $O(|s|)$ [Maneth\&Bussato 2004]
- Navigation (up/1st child/next sibling) on the representation can be done in P only if the MTT T is a path-linear.
- Corollary: MTT ${ }_{\text {oI }}$ Translation Membership is in NP
- Proof is by the 'Garbage-Free' form in the next page...

k-Compositions of MTTs:

Translation Membership for MTT OI $^{K}{ }^{K}$ and MTT ${ }_{\text {IO }}{ }^{K}$

- MTT ${ }_{01}{ }^{k}(k \geqq 1)$ Translation Membership is NP-complete
- Proof is by the Garbage-Free Form [Inaba\&Maneth 2008]

Any composition sequence of $\mathrm{MTT}_{\mathrm{oI}}$'s
$\mathbf{T}=\mathbf{T}_{1} ; \mathbf{T}_{2} ; \cdots ; \mathbf{T}_{\mathrm{k}}$ can be transformed to a
"Garbage-Free" sequence of path-linear MTT $_{\text {oI }}{ }^{\prime} s$
$\mathbf{T}=\rho_{1} ; \rho_{2} ; \cdots ; \rho_{2 k}$ where for any (s, t) with $t \in \mathbf{t}$ (s), there exists intermediate trees

$$
s_{1} \in \rho_{1}(s), s_{2} \in \rho_{2}\left(s_{1}\right), \cdots, t \in \rho_{2 k}\left(s_{2 k-1}\right) \text { such that }\left|s_{i}\right| \leqq c|t|
$$

\rightarrow by NP-oracle we can guess all s_{i} 's
$\circ \mathrm{MTT}_{10}{ }^{\mathrm{k}}$ ($\mathrm{k} \geqq 2$) Translation Membership is NP-complete

- Proof is by Simulation between IO and OI [Engelfriet\&Vogler 1985]
$\circ \mathrm{MTT}_{\mathrm{OI}} \subseteq \mathrm{MTT}_{\mathrm{IO}} ; \mathrm{MTT}_{\mathrm{IO}}$ and $\mathrm{MTT}_{\mathrm{IO}} \subseteq \mathrm{MTT}_{\mathrm{OI}} ; \mathrm{MTT}_{\mathrm{OI}}$

Main Result: Translation Membership for MTT $_{\text {IO }}$

- MTT $_{\text {IO }}$ Translation Membership is in PTIME (for an mtt with k parameters, $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}+2}\right)$)
- Proof is based on the Inverse Type Inference [Engelfriet\&Vogler 1985, Milo\&Suciu\&Vianu 2000]

For an MTT T and a tree t, the inverse image $\mathbf{T}^{-1}(\mathrm{t})$ is a regular tree language

- Instead of " $\mathrm{t} \in \mathrm{T}(\mathrm{s})$ ", check " $\mathrm{s} \in \mathrm{T}^{-1}(\mathrm{t})^{\prime}$ "
- First, construct the bottom-up tree automaton recognizing $\mathrm{T}^{-1}(\mathrm{t})$
- Then, run the automaton on s.

PITFALL

The automaton may have $2^{|t|}$ states in the worst case.

PTIME SOLUTION
Do not fully instantiate the automaton. Run it while constructing it on-the-fly.

EXAMPLE (1)

$\operatorname{st}\left(A\left(x_{1}\right)\right) \rightarrow d b\left(x_{1}, d b\left(x_{2}, E\right)\right)$
○ T $=\mathrm{db}\left(\mathrm{A}\left(\mathrm{x}_{1}\right), \mathrm{y}_{1}\right) \rightarrow \mathrm{db}\left(\mathrm{x}_{1}, \mathrm{db}\left(\mathrm{x}_{2}, \mathrm{y}_{1}\right)\right)$

$$
\begin{aligned}
& s=A(B) \\
& t=F(G(E, E), G(E, E))
\end{aligned}
$$

- State of the inverse-type automaton :: \{st\} U(\{db\} $\times \mathrm{V}(\mathrm{t})) \rightarrow \mathbf{2}^{\mathrm{V}(\mathrm{t})}$

We assign the state q_{A} such that:

$$
\begin{array}{ll}
q_{A}(s t)=q_{B}\left(d b, q_{B}(d b, E)\right)=a_{B}(d b,\{G(E, E)\}) & =\{F(G(E, E), G(E, E))\} \\
q_{A}(d b, E)=q_{B}\left(d b, q_{B}(d b, E)\right) & =\{F(G(E, E), G(E, E))\} \\
q_{A}(d b, G(E, E))=q_{B}\left(d b, q_{B}(d b, G(E, E))\right) & =\} \\
q_{A}(d b, F(G(E, E), G(E, E)))=\cdots & =\{
\end{array}
$$

We assign the state q_{B} such that:

| $\mathrm{a}_{\mathrm{B}}(\mathrm{st})$ | $=\{$ |
| :--- | :--- | :--- |
| $\mathrm{a}_{\mathrm{B}}(\mathrm{db}, \mathrm{E})$ | $=\{\mathrm{G}(\mathrm{E}, \mathrm{E})\} \quad / / \mathrm{F}(\mathrm{E}, \mathrm{E}) \notin \mathrm{V}(\mathrm{t})$ |
| $\mathrm{a}_{\mathrm{B}}(\mathrm{db}, \mathrm{G}(\mathrm{E}, \mathrm{E}))$ | $=\{F(\mathrm{G}(\mathrm{E}, \mathrm{E}), \mathrm{G}(\mathrm{E}, \mathrm{E}))\} / / \mathrm{G}(\mathrm{G}, \mathrm{G}) \notin \mathrm{V}(\mathrm{t})$ |
| $\mathrm{a}_{\mathrm{B}}(\mathrm{db}, \mathrm{F}(\mathrm{G}(\mathrm{E}, \mathrm{E}), \mathrm{G}(\mathrm{E}, \mathrm{E})))$ | $=\{ \}$ |

EXAMPLE (2)

$\operatorname{st}\left(A\left(x_{1}\right)\right) \rightarrow d b\left(x_{1}, d b\left(x_{1}, E\right)\right)$
○ $T=d b\left(A\left(x_{1}\right), y_{1}\right) \rightarrow d b\left(x_{1}, d b\left(x_{1}, y_{1}\right)\right)$

$$
\begin{aligned}
& s=A(B) \\
& t=F(G(E, E), F(E, E))
\end{aligned}
$$

- State of the inverse-type automaton :: \{st\} U(\{db\} $\times \mathrm{V}(\mathrm{t})) \rightarrow \mathbf{2}^{\mathrm{V}(\mathrm{t})}$

Note

- Complexity:
- At each node of s, one function of type $\{s t\} \cup(\{d b\} \times V(t)) \rightarrow 2^{V(t)}$ is computed
- $\{s t\} \cup(\{d b\} \times V(t)) \rightarrow 2^{V(t)} \equiv 2^{V(t) \times(\{s t\} \cup(\{d b\} \times V(t)))}$
- Each function is of size $O\left(|V(t)|^{2}\right)$, which is computed per each node ($\mathrm{O}(|\mathrm{s}|)$ times) (and, computation of each entry of the function requires $O\left(|t|^{2}\right)$ time $) \rightarrow \mathrm{O}\left(|\mathrm{s}||t|^{4}\right)$ time
- MTT $_{\text {OI }}$ also has regular inverse image, but the inversetype automaton may have $2^{\wedge} 2^{\wedge}|t|$ many states in the worst case
\rightarrow Computing even a single state requires EXPTIME

Several Extensions

As long as the inverse type is sufficiently small, we can apply the same technique.

- Variants of MTTs with PTIME Translation Membership
- MTT $_{\text {IO }}$ with TAC-look-ahead
- Rules are chosen not only by the label of the current node, but by a regular look-ahead and (dis)equality-check on child subtrees

```
f(A(x, (x, ) ) s.t. ( }\mp@subsup{x}{1}{}\equiv\mp@subsup{x}{2}{}\quad->C(f(\mp@subsup{x}{1}{})
f( A( }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})) s.t. ( x has even number of node
    -> D(f(x, ), f(x, ) )
f( A( }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\mathrm{ ) otherwise }->E(f(\mp@subsup{x}{1}{}),f(\mp@subsup{x}{2}{})
```

- Multi-Return MTT ${ }_{\text {IO }}$
- Each function can return multiple tree fragments (tuples of trees)

$$
\begin{aligned}
& f\left(A\left(x_{1}, x_{2}\right)\right) \rightarrow \operatorname{let}\left(z_{1}, z_{2}\right)=g\left(x_{1}\right) \text { in } D\left(z_{1}, C\left(z_{2}\right)\right) \\
& g\left(A\left(x_{1}, x_{2}\right)\right) \rightarrow\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)
\end{aligned}
$$

- Finite-copying MTT ${ }_{\text {OI }}$
- OI, but each parameter is copied not so many times.

Conclusion and Open Problems

- Complexity of Translation Membership is
- NP-complete for
- $\mathrm{MTT}_{\mathrm{OI}}{ }^{\mathrm{k}}(\mathrm{k} \geqq 1), \mathrm{MTT}_{I \mathrm{I}}{ }^{\mathrm{k}}(\mathrm{k} \geqq 2)$
- Higher-Order MTT, Macro Forest TT, \cdots
- PTIME for
$\circ \mathrm{MTT}_{\mathrm{IO}}$ (+ look-ahead and multi-return)
- Open Problems
- MTT OI with at most one accumulating parameter
- Our encoding of SAT used 3 parameters, which actually can be done with 2. How about 1?
- $\mathrm{MTT}_{\mathrm{IO}}$ with holes [Maneth\&Nakano PLAN-X08]
- It is an extension of IO MTTs, but has more complex inverse-type.

Thank You!

