
THE COMPLEXITY OF
TRANSLATION MEMBERSHIP FOR
MACRO TREE TRANSDUCERS

Kazuhiro Inaba (The University of Tokyo)

Sebastian Maneth (NICTA & University of New South Wales)

PLAN-X 2009, Savannah

TRANSLATION MEMBERSHIP?

 “Translation Membership Problem” for a tree-to-tree
translation τ :

 We are especially interested in nondeterministic
translations where τ (s) is a set of trees
(i.e., the translation membership problem asks “t ∈τ (s) ?”)

 Input: Two trees s and t

 Output: “YES” if τ translates s to t (“NO” otherwise)

s t
τ

？

APPLICATIONS

 Dynamic assertion testing / Unit testing

 How can we check the assertion efficiently?

 How can we check it when the translation depends on external
effects (randomness, global options, or data form external DB…)?
 “Is there a configuration realizes the input/output pair?”

 Sub-problem of larger decision problems

 Membership test for the domain of the translation
[Inaba&Maneth 2008]

assert(
run_my_xslt(load_xml(“test-in.xml”))

== load_xml(“test-out.xml”));

KNOWN RESULTS ON

COMPLEXITIES OF TRANSLATION MEMBERSHIP

 If τ is a Turing Machine
… Undecidable

 If τ is a finite composition of
top-down/bottom-up tree transducers
… Linear space [Baker 1978]
 Cubic Time [This Work]

 If τ is a finite composition of
deterministic macro tree transducers
… Linear time (Easy consequence of [Maneth 2002])

OUTLINE

 Macro Tree Transducers (MTTs)

 IO and OI -- Two Evaluation Strategies

 MTTOI Translation Membership is NP-complete

 … also for finite compositions of MTTIO/MTTOI’s

 MTTIO Translation Membership is in PTIME!!

 … also for several extensions of MTTIO!!

 Conclusion and Open Problems

MACRO TREE TRANSDUCER (MTT)

 An MTT M = (Q, q0, Σ , Δ , R) is a set of first-order
functions of type Tree(Σ) * Tree(Δ)k Tree(Δ)

 Each function is inductively defined on the 1st parameter

 Dispatch based on the label of the current node

 Functions are applied only to the direct children of the current
node

 Not allowed to inspect other parameter trees

start(A(x1)) → double(x1, double(x1, E))

double(A(x1), y1) → double(x1, double(x1, y1))
double(B, y1) → F(y1, y1)
double(B, y1) → G(y1, y1)

(M)TT IN THE XML WORLD

 Simulation of XSLT, XML-QL [Milo&Suciu&Vianu 2000]
 Expressive fragment of XSLT and XML-QL can be represented as

a composition of pebble tree transducers (which is a model quite
related to macro tree transducers)

 TL – XML Translation Language [MBPS 2005]
 A translation language equipping Monadic Second Order Logic as

its query sub-language, representable by 3 compositions of MTTs.

 Exact Type Checking [MSV00, Tozawa 2001,
Maneth&Perst&Seidl 2007, Frisch&Hosoya 2007, …]

 Streaming [Nakano&Mu 2006]

 Equality Test [Maneth&Seidl 2007]

 …

IO AND OI

 IO (inside-out / call-by-value)：
evaluate the arguments first and then call the function

start(A(B)) double(B, double(B, E))
 double(B, F(E, E))

 F(F(E,E), F(E,E))
or G(F(E,E), F(E,E))

or
 double(B, G(E, E))

 F(G(E, E), G(E, E))
or G(G(E, E), G(E, E))

double(A(x1), y1) → double(x1, double(x2, y1))
double(B, y1) → F(y1, y1)
double(B, y1) → G(y1, y1)

IO AND OI

 OI (outside-in / call-by-name)： call the function first
and evaluate each argument when it is used

start(A(B)) double(B, double(B, E))
 F(double(B, E), double(B, E))
 F(F(E,E), double(B, E)) F(F(E,E), F(E,E))

 F(F(E,E), G(E,E))
 F(G(E,E), double(B, E)) F(G(E,E), F(E,E))

 F(G(E,E), G(E,E))
 G(double(B, E), double(B, E))
 G(F(E,E), double(B, E)) G(F(E,E), F(E,E))

 G(F(E,E), G(E,E))
 G(G(E,E), double(B, E)) G(G(E,E), F(E,E))

 G(G(E,E), G(E,E))

double(A(x1), y1) → double(x1, double(x2, y1))
double(B, y1) → F(y1, y1)
double(B, y1) → G(y1, y1)

IO OR OI?

 Why we consider two strategies?

 IO is usually a more precise approximation of originally
deterministic programs:

 OI has better closure properties and a normal form:

 For a composition sequence of OI MTTs, there exists a certain
normal form with a good property, while not in IO. (explained later)

// f(A(x)) if ≪complex_choice≫ then e1 else e2
f(A(x)) e1
f(A(x)) e2
g(A(x)) h(x, f(x))
h(A(x), y) B(y, y)

RESULTS

τ

TRANSLATION MEMBERSHIP FOR MTTOI

 MTTOI Translation Membership is NP-hard

 Proof is by reduction from the 3-SAT problem

 There is an MTTOI translation that takes an input encoding two
natural numbers (c and v), and generates all (and only) satisfiable
3-CNF boolean formulas with c clauses and v variables.

A

A

B

B

B

x1

∧

x2

∨

x1

∨

x3x2 x3

Z

2
clauses

3
variables

￢

∧

x2

∨

x1

∨

x3x2 ￢

x3x1

e.g.,

or

But, not

x1

∧

￢

∨

￢

∨

x1x1 ￢

x1x1 x1

TRANSLATION MEMBERSHIP FOR MTTOI

 ‘Path-linear’ MTTOI Translation Membership is in NP
[Inaba&Maneth 2008]

 Path-linear ⇔ No nested state calls to the same child node

 Proof is by the “compressed representation”

 The set τ (s) can be represented as a single “sharing graph”
(generalization of a DAG) of size O(|s|) [Maneth&Bussato 2004]

 Navigation (up/1st child/next sibling) on the representation can be
done in P only if the MTT τ is a path-linear.

 Corollary: MTTOI Translation Membership is in NP

 Proof is by the ‘Garbage-Free’ form in the next page…

f(A(x1, x2)) g(x1, g(x2, B)) // ok
f(A(x1, x2)) g(x1, g(x1, B)) // bad
f(A(x1, x2)) h(x1, g(x2, B) , g(x2, C)) // ok

K-COMPOSITIONS OF MTTS:
TRANSLATION MEMBERSHIP FOR MTTOI

K AND MTTIO
K

 MTTOI
k (k≧1) Translation Membership is NP-complete

 Proof is by the Garbage-Free Form [Inaba&Maneth 2008]

 by NP-oracle we can guess all si’s

 MTTIO
k (k≧2) Translation Membership is NP-complete

 Proof is by Simulation between IO and OI [Engelfriet&Vogler 1985]

 MTTOI ⊆ MTTIO ； MTTIO and MTTIO ⊆ MTTOI ； MTTOI

Any composition sequence of MTTOI’s
τ = τ 1 ； τ 2 ； … ； τ k can be transformed to a

“Garbage-Free” sequence of path-linear MTTOI’s
τ = ρ 1 ； ρ 2 ； … ； ρ 2k where for any (s,t) with t∈τ (s),

there exists intermediate trees
s1∈ρ 1 (s), s2∈ρ 2 (s1), …, t∈ρ 2k (s2k-1) such that |si|≦ c |t|

MAIN RESULT:
TRANSLATION MEMBERSHIP FOR MTTIO

 MTTIO Translation Membership is in PTIME
(for an mtt with k parameters, O(nk+2))

 Proof is based on the Inverse Type Inference
[Engelfriet&Vogler 1985, Milo&Suciu&Vianu 2000]

 Instead of “t ∈ τ (s)”, check “s ∈ τ -1(t)”

 First, construct the bottom-up tree automaton recognizing τ -1(t)

 Then, run the automaton on s.

For an MTT τ and a tree t, the inverse image τ -1 (t) is a
regular tree language

PITFALL
The automaton may have 2|t|

states in the worst case.

PTIME SOLUTION
Do not fully instantiate the

automaton. Run it while
constructing it on-the-fly.

EXAMPLE (1)

 τ = s = A(B),
t = F(G(E,E), G(E,E))

 State of the inverse-type automaton :: {st} ∪ ({db}×V(t)) 2V(t)

 where V(t) is the set of all subtrees of t

st(A(x1)) → db(x1, db(x2, E))
db(A(x1), y1) → db(x1, db(x2, y1))
db(B, y1) → F(y1, y1)
db(B, y1) → G(y1, y1)

A

B

We assign the state qB such that:
qB (st) = {}
qB (db, E) = { G(E,E) } // F(E,E) ∉ V(t)
qB (db, G(E,E)) = { F(G(E,E), G(E,E)) } // G(G,G) ∉ V(t)
qB (db, F(G(E,E), G(E,E))) = {}

We assign the state qA such that:
qA (st) = qB (db, qB(db,E)) = qB (db, {G(E,E)}) = {F(G(E,E), G(E,E))}
qA (db, E) = qB (db, qB(db,E)) = {F(G(E,E), G(E,E))}
qA (db, G(E,E)) = qB (db, qB(db,G(E,E))) = {}
qA (db, F(G(E,E), G(E,E))) = … = {}

EXAMPLE (2)

 τ = s = A(B),
t = F(G(E,E), F(E,E))

 State of the inverse-type automaton :: {st} ∪ ({db}×V(t)) 2V(t)

 where V(t) is the set of all subtrees of t

st(A(x1)) → db(x1, db(x1, E))
db(A(x1), y1) → db(x1, db(x1, y1))
db(B, y1) → F(y1, y1)
db(B, y1) → G(y1, y1)

A

B

qB (st) = {}
qB (db, E) = { G(E,E), F(E,E) }
qB (db, G(E,E)) = {} // F(G,G) and G(G,G) ∉ V(t)
qB (db, F(E,E)) = {} // F(F,F) and G(F,F) ∉ V(t)
qB (db, F(G(E,E), F(E,E))) = {} // …

qA (st) = qB (db, qB(db,E)) = qB (db, {G(E,E),F(E,E)}) = {}
qA (db, E) = qB (db, qB(db,E)) = {}
qA (db, G(E,E)) = qB (db, qB(db,G(E,E))) = {}
qA (db, F(E,E)) = qB (db, qB(db,F(E,E))) = {}
qA (db, F(G(E,E), G(E,E))) = … = {}

NOTE

 Complexity:

 At each node of s, one function of type
{st}∪({db}×V(t)) 2V(t) is computed

 {st}∪({db}×V(t)) 2V(t) ≡ 2V(t)×({st}∪({db}×V(t)))

 Each function is of size O(|V(t)|2), which is computed per
each node (O(|s|) times) (and, computation of each entry
of the function requires O(|t|2) time) O(|s| |t|4) time

 MTTOI also has regular inverse image, but the inverse-
type automaton may have 2^2^|t| many states in the
worst case
 Computing even a single state requires EXPTIME

SEVERAL EXTENSIONS

 Variants of MTTs with PTIME Translation Membership

 MTTIO with TAC-look-ahead

 Rules are chosen not only by the label of the current node, but by
a regular look-ahead and (dis)equality-check on child subtrees

 Multi-Return MTTIO

 Each function can return multiple tree fragments (tuples of trees)

 Finite-copying MTTOI

 OI, but each parameter is copied not so many times.

f(A(x1,x2)) s.t. x1≡x2 → C(f(x1))
f(A(x1,x2)) s.t. x1 has even number of nodes

→ D(f(x1), f(x2))
f(A(x1,x2)) otherwise → E(f(x1), f(x2))

f(A(x1,x2)) let (z1,z2) = g(x1) in D(z1, C(z2))
g(A(x1,x2)) (f(x1), f(x2))

As long as the inverse type is
sufficiently small, we can apply the
same technique.

CONCLUSION AND OPEN PROBLEMS

 Complexity of Translation Membership is

 NP-complete for

 MTTOI
k (k ≧ 1), MTTIO

k (k ≧ 2)

 Higher-Order MTT, Macro Forest TT, …

 PTIME for

 MTTIO (+ look-ahead and multi-return)

 Open Problems

 MTTOI with at most one accumulating parameter

 Our encoding of SAT used 3 parameters, which actually can be
done with 2. How about 1?

 MTTIO with holes [Maneth&Nakano PLAN-X08]

 It is an extension of IO MTTs, but has more complex inverse-type.

THANK YOU!

