
Parsing Expression Grammar

and Packrat Parsing (Survey)

IPLAS Seminar Oct 27, 2009

Kazuhiro Inaba

This Talk is Based on These Resources

 The Packrat Parsing and PEG Page (by Bryan Ford)
 http://pdos.csail.mit.edu/~baford/packrat/

 (was active till early 2008)

 A. Birman & J. D. Ullman, “Parsing Algorithms with
Backtrack”, Information and Control (23), 1973

 B. Ford, “Packrat Parsing: Simple, Powerful, Lazy,
Linear Time”, ICFP 2002

 B. Ford, “Parsing Expression Grammars: A
Recognition-Based Syntactic Foundation”, POPL 2004

http://pdos.csail.mit.edu/~baford/packrat/

Outline

 What is PEG?
 Introduce the core idea of Parsing Expression

Grammars

 Packrat Parsing
 Parsing Algorithm for the core PEG

 Packrat Parsing Can Support More…
 Syntactic predicates

 Full PEG
 This is what is called “PEG” in the literature.

 Theoretical Properties of PEG

 PEG in Practice

What is PEG?

 Yet Another Grammar Formalism

 Intended for describing grammars of
programming languages (not for NL, nor
for program analysis)

 As simple as Context-Free Grammars

 Linear-time parsable

 Can express:
 All deterministic CFLs (LR(k) languages)
 Some non-CFLs

What is PEG? – Comparison to CFG

(Predicate-Free) Parsing
Expression Grammar Context-Free Grammar

 A ← B C

 Concatenation

 A ← B / C

 Prioritized Choice

 When both B and C
matches, prefer B

 A → B C

 Concatenation

 A → B | C

 Unordered Choice

 When both B and C
matches, either will do

Example

(Predicate-Free) Parsing
Expression Grammar Context-Free Grammar

 S ← A a b c

 A ← a A / a

 S fails on “aaabc”.

 S → A a b c

 A → a A | a

 S recognizes “aaabc”

S

A

Aa

a

abc

S

A

Aa

a A

a

Oops!

Another Example

(Predicate-Free) Parsing
Expression Grammar Context-Free Grammar

 S ← E ;
/ while (E) S
/ if (E) S else S
/ if (E) S
/ …

 if(x>0)
if(x<9)

y=1;
else

y=3; unambiguous

 S → E ;
| while (E) S
| if (E) S else S
| if (E) S
| …

 if(x>0)
if(x<9)

y=1;
else

y=3; ambiguous

Formal Definition

 Predicate-Free PEG G is <N, Σ, S, R>

 N : Finite Set of Nonterminal Symbols

 Σ : Finite Set of Terminal Symbols

 S ∈ N : Start Symbol

 R ∈ N → rhs : Rules, where

 rhs ::= ε

| A (∈ N)

| a (∈ Σ)

| rhs / rhs

| rhs rhs

 Note: A←rhs stands for R(A)=rhs

 Note: Left-recursion is not allowed

Semantics
 [[e]] :: String → Maybe String where String=Σ*

 [[c]] = λs → case s of (for c ∈ Σ)

 c : t → Just t
 _ → Nothing

 [[e1 e2]] = λs → case [[e1]] s of
 Just t → [[e2]] t
 Nothing → Nothing

 [[e1 / e2]] = λs → case [[e1]] s of
 Just t → Just t
 Nothing → [[e2]] s

 [[ε]] = λs → Just s
 [[A]] = [[R(A)]] (recall: R(A) is the unique rhs of A)

Example (Complete Consumption)

S ← a S b / c

 [[S]] “acb” = Just “”

 [[aSb]] “acb” = Just “”

 [[a]] “acb” = Just “cb”

 [[S]] “cb” = Just “b”
[[aSb]] “cb” = Nothing

 [[a]] “cb” = Nothing

[[c]] “cb” = Just “b”

 [[b]] “b” = Just “”

Example (Failure, Partial Consumption)

S ← a S b / c

 [[S]] “b” = Nothing
 [[aSb]] “b” = Nothing

 [[a]] “b” = Nothing

 [[c]] “b” = Nothing

 [[S]] “cb” = Just “b”
 [[aSb]] “cb” = Nothing

 [[a]] “cb” = Nothing

 [[c]] “cb” = Just “b”

Example (Prioritized Choice)

S ← A a

A ← a A / a

 [[S]] “aa” = Nothing

 Because [[A]] “aa” = Just “”, not Just “a”

 [[A]] “aa” = Just “”

 [[a]] “aa” = Just “a”

 [[A]] “a” = Just “”

…

“Recognition-Based”

 In “generative” grammars such as CFG,
each nonterminal defines a language
(set of strings) that it generates.

 In “recognition-based” grammars,
each norterminal defines a parser
(function from string to something)
that it recognizes.

Outline

 What is PEG?
 Introduce the core idea of Parsing Expression

Grammars

 Packrat Parsing
 Parsing Algorithm for the core PEG

 Packrat Parsing Can Support More…
 Syntactic predicates

 Full PEG
 This is what is called “PEG” in the literature.

 Theoretical Properties of PEG

 PEG in Practice

Parsing Algorithm for PEG

 Theorem: Predicate-Free PEG can be
parsed in linear time wrt the length of
the input string.

 Proof

 By Memoization

(All arguments and outputs of
 [[e]] :: String -> Maybe String

are the suffixes of the input string)

[Semantics]

Parsing Algorithm for PEG

How to Memoize?

 Tabular Parsing [Birman&Ullman73]

 Prepare a table of size |G|×|input|, and
fill it from right to left.

 Packrat Parsing [Ford02]
 Use lazy evaluation.

[Semantics]

Parsing PEG (1: Vanilla Semantics)

S ← aS / a
 doParse = parseS :: String -> Maybe String

 parseA s =

 case s of 'a':t -> Just t

 _ -> Nothing

 parseS s = alt1 `mplus` alt2 where

 alt1 = case parseA s of

 Just t -> case parseS t of

 Just u -> Just u

 Nothing -> Nothing

 Nothing-> Nothing

 alt2 = parseA s

[Semantics]

Parsing PEG (2: Valued)

S ← aS / a
 doParse = parseS :: String -> Maybe (Int, String)

 parseA s =

 case s of 'a':t -> Just (1, t)

 _ -> Nothing

 parseS s = alt1 `mplus` alt2 where

 alt1 = case parseA s of

 Just (n,t)-> case parseS t of

 Just (m,u)-> Just (n+m,u)

 Nothing -> Nothing

 Nothing -> Nothing

 alt2 = parseA s

[Semantics]

Parsing PEG (3: Packrat Parsing)

S ← aS / a
 type Result = Maybe (Int, Deriv)

 data Deriv = D Result Result

 doParse :: String -> Deriv

 doParse s = d where

 d = D resultS resultA

 resultS = parseS d

 resultA = case s of ‘a’:t -> Just (1,next)

 _ -> Nothing

 next = doParse (tail s)

 …

[Semantics]

Parsing PEG (3: Packrat Parsing, cnt’d)

S ← aS / a

 type Result = Maybe (Int, Deriv)

 data Deriv = D Result Result

 parseS :: Deriv -> Result

 parseS (D rS0 rA0) = alt1 `mplus` alt2 where

 alt1 = case rA0 of

 Just (n, D rS1 rA1) -> case rS1 of
 Just (m, d) -> Just (n+m, d)

 Nothing -> Nothing

 Nothing -> Nothing

 alt2 = rA0

 alt1 = case parseA s of

 Just (n,t)-> case parseS t of
 Just (m,u)-> Just (n+m,u)

 Nothing -> Nothing

 Nothing -> Nothing

 alt2 = parseA s

[Semantics]

Packrat Parsing Can Do More

 Without sacrificing linear parsing-time,
more operators can be added. Especially,
“syntactic predicates”:

 [[&e]] = λs → case [[e]] s of
 Just _ → Just s

 Nothing → Nothing

 [[!e]] = λs → case [[e]] s of
 Just _ → Nothing

 Nothing → Just s

[Semantics]

Formal Definition of PEG

 PEG G is <N, Σ, S, R∈N→rhs> where

 rhs ::= ε

| A (∈ N)

| a (∈ Σ)

| rhs / rhs

| rhs rhs

| &rhs

| !rhs

| rhs? (eqv. to X where X←rhs/ε)

| rhs* (eqv. to X where X←rhs X/ε)

| rhs+ (eqv. to X where X←rhs X/rhs)

Example: A Non Context-Free Language

 {anbncn | n>0}

is recognized by

 S ← &X a* Y !a !b !c
X ← aXb / ab
 Y ← bYc / bc

Example: C-Style Comment

 C-Style Comment

 Comment ← /* ((! */) Any)* */

 (for readability, meta-symbols are colored)

 Though this is a regular language, it cannot be
written this easy in conventional regex.

Outline

 What is PEG?
 Introduce the core idea of Parsing Expression

Grammars

 Packrat Parsing
 Parsing Algorithm for the core PEG

 Packrat Parsing Can Support More…
 Syntactic predicates

 Full PEG
 This is what is called “PEG” in the literature.

 Theoretical Properties of PEG

 PEG in Practice

Theoretical Properties of PEG

 Two Topics

 Properties of Languages Defined by PEG

 Relationship between PEG and predicate-
free PEG

Language Defined by PEG

 For a parsing expression e

 [Ford04] F(e) = {w∈Σ* | [[e]]w ≠ Nothing }

 [BU73] B(e) = {w∈Σ* | [[e]]w = Just “” }

 [Redziejowski08]
 R. R. Redziejowski, “Some Aspects of Parsing

Expression Grammar”, Fundamenta
Informaticae(85), 2008
 Investigation on concatenation [[e1 e2]] of two PEGs

 S(e) = {w∈Σ* | ∃u. [[e]]wu = Just u }

 L(e) = {w∈Σ* | ∀u. [[e]]wu = Just u }

Properties of F(e) = {w∈Σ*| [[e]]w ≠ Nothing}

 F(e) is context-sensitive

 Contains all deterministic CFL

 Trivially Closed under Boolean Operations
 F(e1) ∩ F(e2) = F((&e1)e2)

 F(e1) ∪ F(e2) = F(e1 / e2)

 ~F(e) = F(!e)

 Undecidable Problems
 “F(e) = Φ”? is undecidable

 Proof is similar to that of intersection emptiness
of context-free languages

 “F(e) = Σ*”? is undecidable

 “F(e1)=F(e2)”? is undecidable

Properties of B(e) = {w∈Σ*| [[e]]w = Just “”}

 B(e) is context-sensitive

 Contains all deterministic CFL

 For predicate-free e1, e2
 B(e1)∩B(e2) = B(e3) for some predicate-free e3

 For predicate-free & well-formed e1,e2 where
well-formed means that [[e]] s is either Just”” or Nothing

 B(e1)∪B(e2) = B(e3) for some pf&wf e3

 ~B(e1) = B(e3) for some predicate-free e3

 Emptiness, Universality, and Equivalence is
undecidable

Properties of B(e) = {w∈Σ*| [[e]]w = Just “”}

 Forms AFDL, i.e.,

 markedUnion(L1, L2) = aL1 ∪ bL2

 markedRep(L1) = (aL1)*

 marked inverse GSM (inverse image of a string
transducer with explicit endmarker)

 [Chandler69] AFDL is closed under many other
operations, such as left-/right- quotients,
intersection with regular sets, …

 W. J. Chandler, “Abstract Famlies of Deterministic
Languages”, STOC 1969

Predicate Elimination

 Theorem: G=<N,Σ,S,R> be a PEG such that
F(S) does not contain ε. Then there is an
equivalent predicate-free PEG.

 Proof (Key Ideas):

 [[&e]] = [[!!e]]

 [[!e C]] = [[(e Z / ε) C]] for ε-free C
 where Z = (σ1/…/σn)Z / ε, {σ1, …,σn}=Σ

Predicate Elimination

 Theorem: PEG is strictly more powerful than
predicate-free PEG

 Proof:

 We can show, for predicate-free e,

 ∀w.([[e]] “” = Just “” ⇔ [[e]] w = Just w)

by induction on |w| and on the length of derivation

 Thus we have

 “”∈F(S) ⇔ F(S)=Σ*

but this is not the case for general PEG (e.g., S←!a)

Outline

 What is PEG?
 Introduce the core idea of Parsing Expression

Grammars

 Packrat Parsing
 Parsing Algorithm for the core PEG

 Packrat Parsing Can Support More…
 Syntactic predicates

 Full PEG
 This is what is called “PEG” in the literature.

 Theoretical Properties of PEG

 PEG in Practice

PEG in Practice

 Two Topics

 When is PEG useful?

 Implementations

When is PEG useful?

 When you want to unify lexer and parser

 For packrat parsers, it is easy.

 For LL(1) or LALR(1) parsers, it is not.

 Error in C++98, because >> is RSHIFT, not two
closing angle brackets

 Ok in Java5 and C++1x, but with strange grammar

list<list<string>>

(* nested (* comment *) *)

s = “embedded code #{1+2+3} in string”

Implementations

Performance (Rats!)

 R. Grimm, “Better Extensibility through Modular
Syntax”, PLDI 2006

 Parser Generator for PEG, used, e.g., for Fortress

Experiments
on Java1.4
grammar,

with sources
of size

0.7 ～ 70KB

PEG in Fortress Compiler

 Syntactic Predicates are widely used

 (though I’m not sure whether it is essential, due to
my lack of knowledge on Fortress…)

/* The operator "|->" should not be in the left-hand sides of map
expressions and map/array comprehensions.

*/

String mapstoOp =
!("|->" w Expr (w mapsto / wr bar / w closecurly / w comma)) "|->" ;

/* The operator "<-" should not be in the left-hand sides of
generator clause lists. */

String leftarrowOp = !("<-" w Expr (w leftarrow / w comma)) "<-";

Optimizations in Rats!

Summary

 Parsing Expression Grammar (PEG) …

 has prioritized choice e1/e2, rather than
unordered choice e1|e2.

 has syntactic predicates &e and !e, which
can be eliminated if we assume ε-freeness.

 might be useful for unified lexer-parser.

 can be parsed in O(n) time, by memoizing.

