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What We Want to Do

 Verification of Graph-to-Graph Transformations

 e.g., Queries on Graph-Structured Database

or   Transformations of XML with “id” links
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What We Want to Do

 Verification of Graph-to-Graph Transformations

with respect to input/output specifications
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verify whether or not:

for any graph G,   G ⊧ φIN ⇒ f(G) ⊧ φOUT

φIN
“From (a) we can

reach (a) again.”

φOUT
“From (A) we can

reach (A) again.”
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Verification by Pre-Image
(a.k.a. “weakest precondition” or “inverse type inference”)

Given f and φOUT , compute invf(φOUT) such that:

for any graph G,   f(G) ⊧ φOUT iff  G ⊧ invf(φOUT)

Then “for any graph G,   G ⊧ φIN ⇒ f(G) ⊧ φOUT”

iff “for any graph G,   G ⊧ (φIN → invf(φOUT ))”

i.e.,  φIN → invf(φOUT ) is valid

f φOUT

invf(φOUT)

φIN
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To Be More Concrete…

 Which logic can we use for specifying φIN/OUT ?

 Must be strong enough to express useful conditions.

 Must be weak enough to have decidable validity.

 What kind of transformation f can be verified ?

 We must be able to compute the pre-image.
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Our Approach

 Take Modal-μ Calculus as the specification logic

 (At least for trees) capture all existing XML-Schemas

 Define a new model of graph transformation

called Modal-μ Definable Transduction

 Pre-image of modal-μ sentence can be

fully automatically computed

 Expressive enough to capture

(unnested) structural recursion on graphs
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Related Work

 MSO (Monadic 2nd-Order Logic) Definable Transduction

 Overall structure is more or less the same.

 Ours is a proposal to use Modal-μ instead of MSO

 Hoare-Style Verification of Imperative Programs

 Ours don’t deal with pointers or destructive updates.

 Rather, it is more suitable for

functional programs

 Structural recursion is handled

without any annotations

{ φIN }

p := root

while  p != null do

q := p.next

p.next := p.next.next

p := q

end

{ φOUT }

fun f( {$l: $x} ) = {cap($l) : g($x)}

fun g( {_: $x} ) = f($x)

{ φIN }   f   { φOUT }
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Outline
 Two Kinds of Logics on Graphs
 Predicate Logics

 Modal Logics

 Why Modal-μ ?

 Review: Predicate-Logic Based Approach
 MSO-Definable Graph Transduction [Courcelle 94]

 Our Work:
 Modal-μ Definable Graph Transduction

 Computation of Pre-Image
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Graphs (in Today’s Talk)

 Σ : Finite Nonempty Alphabet

 G = (V, E, π)

 V Set of Nodes

 E ⊆ V × V Set of Directed Edges

 π  : V → 2Σ Labels on Nodes

b

a b

a

Σ = {a, b}

V = {

} 

b

a b

a

π =

→ {a,b}

→ {a}

→ {b}

→ {}
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Predicate Logics on Graphs

φ ::=

| False | ￢ φ | φ ∨ φ 

| σ(x)  (for σ∈Σ) “node x is labeled σ”

| edge(x, y) “an edge connects x to y”

| ∃x. φ “there’s x that makes ψ hold”

| ∃S. φ “there’s a set S that makes ψ hold”

| x ∈ S “x is in S”

FO

MSO

We can define True, φ∧φ , φ→φ, ∀x.φ, and ∀S.φ.
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Semantics

 For a graph G=(V,E,π) and an environment

Γ : Var→V

G, Γ ⊧ σ(x) iff  σ ∈ π(Γ(x))

“node x is labeled σ”

G, Γ ⊧ edge(x, y)  iff  (Γ(x), Γ(y)) ∈ E

“an edge connects x to y”

G, Γ ⊧ ∃x.φ iff  there’s v∈V s.t. G,Γ[x:v] ⊧ φ

…
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Modal Logics on Graphs

ψ ::=

| False | ￢ φ | φ ∨ φ 

| σ  (for σ∈Σ) “current node is labeled σ”

| ◇φ  “current node has an outgoing edge

whose destination satisfies φ”

| X

| μX.φ “least fixpoint” (X must be in even # of ￢)

We Can Define: □φ (dual of ◇) and νX.φ (GreatestFixPt)

M

Mμ
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Semantics

 For a graph G=(V,E,π), an environment

Γ : Var→2V, and the current node v ∈ V

G, v, Γ ⊧ σ iff  σ ∈ π(v)

“current node is labeled σ”

G, v, Γ ⊧ ◇φ iff  there’s w (v,w)∈E & G,w,Γ ⊧ φ

“current node has an outgoing edge

whose destination satisfies φ”

G, v, Γ ⊧ μY. φ iff  v ∈ LFP(F)

where F(A) = {w∈V | G, w, Γ[Y:A] ⊧ φ}

…
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Examples
 “From the node x, we can reach a σ-node”

∀S. ( (x∈S ∧ ∀y.∀z.(y∈S ∧
(edge(y,z)→z∈S)))

→ ∃y. (y ∈ S ∧ σ(y)))

 “Confluence”

∀y. ∀z. ( edge(x,y) ∧ edge(x,z)
→ ∃w. (edge(y,w) ∧ edge(z,w)) )

 “From the current node, we can reach a σ-node”

μY. (σ  ∨ ◇Y)

 “Confluence”
(No way to express it in Modal-μ)
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MSO Definable (1-copying) Transduction

[Courcelle 94]

A set of MSO formulas T = 

・ σOUT(x) for each σ∈Σ

・ edgeOUT(x,y)

defines  a transformation  fT converting

G = (V, E, π) into  G’ = (V, E’, π’) where

π’( v ) = { σ | G, x:v ⊧ σOUT(x) }

 E’ = { (v, w) |  G, x:v, y:w ⊧ edgeOUT (x,y) }
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Example (Σ = {a, b, A, B})

a

a

b

b

A

A

B

B

edgeOUT(x, y)  ≡

∃z.(edge(x,z)∧ edge(z,y))

aOUT(x) ≡ bOUT(x) ≡ False

AOUT(x) ≡ a(x)

BOUT(x) ≡ b(x)
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Pre-Image is Easily Obtained

a

a

b

b

A
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B

B

∀x. A(x) → ∃y.

edge(x,y)

∧ A(y)

Inline 

Expansion

∀x. a(x) → ∃y.

∃z.(edge(x,z) ∧ edge(z,y))

∧ a(y)

edgeOUT(x, y)  ≡

∃z.(edge(x,z)∧ edge(z,y))

aOUT(x) ≡ bOUT(x) ≡ False

AOUT(x) ≡ a(x)

BOUT(x) ≡ b(x)
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Expressiveness & Complexity

FO

MSO

Modal

Modal-μ

◇φ

μX.φ ∃S.φ

∃x.φ
PSPACE

EXPTIME

Undecidable
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Expressiveness & Complexity

(on “tree-like” graphs)

FO

MSO

Modal

Modal-μ

◇φ

μX.φ ∃S.φ

∃x.φ
PSPACE

EXPTIME

NonElementary
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Modal-μ and MSO
 Complexity of Validity Checking
 Modal-μ : EXPTIME-complete

 MSO : Undecidable (Even in Trees, HyperEXP)

 Expressive Power
 Modal-μ =  Bisimulation-Invariant Subset of MSO

[Janin & Walukiewicz 96]

 “Bisimulation-Invariant” ≃
“Physical equality of pointers cannot be checked”

 Not a severe restriction for purely functional 
programs!
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Modal-μ Definable (1-copying) Transduction

A set of Modal-μ formulas T =

・ σOUT for each σ∈Σ

・ edgeOUT an existential formula Fv={X} 

defines  a transformation  fT converting

G = (V, E, π) into  G’ = (V, E’, π’) where

π’( v ) = { σ | G, v ⊧ σOUT }

 E’ = { (v, w) |  G, v, X:{w} ⊧ edgeOUT }
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Example (Σ = {a, b, A, B})

a

a

b

b

A

A

B

B

A → ◇Aa → ◇◇a

edgeOUT ≡ ◇◇X
aOUT ≡ bOUT ≡ False

AOUT ≡ a

BOUT ≡ b
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Existential Formula

 A formula e with one free variable X is

existential, if

 Examples:

 “X ∨ True”   is not existential  (Consider P={}).

 “◇X” is existential.

 “□X” is not    (when v is a leaf node …).

 “σ” is not, but “X ∧ σ” is.

for all  G=(V,E,π), v∈V, P⊆V

G, v, X:P ⊧ e     iff     ∃w∈P.  G, v, X:{w} ⊧ e
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Syntactic Condition

 Theorem:

e is existential if it is in the following syntax

e ::= False | X | Y | e ∨ e | ◇e | μY. e

| e ∧ φ   where φ is any formula without free variables

(True, ￢, σ, □, and GFP must be “guarded” by _ ∧ _)

OPEN QUESTION: is this a necessary condition ?
(i.e., do all existential formulas have logically-equivalent forms in this syntax?)

for all  G=(V,E,π), v∈V, P⊆V

G, v, X:P ⊧ e     iff     ∃w∈P.  G, v, X:{w} ⊧ e
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More Examples

 edgeOUT ≡ X edgeOUT ≡ a

 edgeOUT ≡ μY. ((X ∧ a) ∨ ◇Y)

edgeOUT ≡ X∧◇X

 edgeOUT ≡ μY. ((X ∧ a ∧ □b) ∨ (￢a ∧ ◇Y)

a a

b

a
a

a b

b

a

(Non-Examples)
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Pre-Image Computation

For T = (σOUT, eOUT), define

 inv( False ) = False

 inv( ￢ φ ) = ￢ inv( φ )

 inv( φ1 ∨ φ2 ) = inv( φ1 ) ∨ inv( φ2 )

 inv( σ ) = σOUT

 inv( ◇ φ ) = edgeOUT [X / inv(φ)]

 inv( Y ) = Y

 inv( μY. φ ) = μY. inv(φ)

Theorem:   fT(G), v  ⊧ φ     iff    G, v ⊧ inv(φ)
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Proof of the Theorem

 By Induction on φ. The essential case is:

G, v ⊧ inv(◇φ)

iff G,v ⊧ edgeOUT [X / inv(φ)] (definition of inv)

iff ∃w (G,v,X:{w} ⊧ edgeOUT and G,w ⊧inv(φ)) (ext)

iff ∃w ((v,w) in E’ and G,w ⊧inv(φ)) (def of E’)

iff ∃w ((v,w) in E’ and fT(G),w ⊧φ) (IH)

iff fT(G), v  ⊧ ◇φ (definition of ◇)

Theorem:   fT(G), v  ⊧ φ     iff    G, v ⊧ inv(φ)
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n-copying

Modal-μ Definable Transduction

A set of Modal-μ formulas T =

・ σk
OUT for each σ∈Σ, k∈{1 .. n}

・ edgeik
OUT for each i, k∈{1 .. n} : existential

defines  a transformation  fT converting

G = (V, E, π) into G’ = (V*{1..n}, E’, π’) where

π’( <v,k> ) = { σ | G, v ⊧ σk
OUT }

 E’ = { (<v,i>, <w,k>)

|  G, v, X:{w} ⊧ edgeik
OUT }
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Example (Σ = {a, b, A, B})

a

b b

<u,2> ⊧ A→◇b
u ⊧ A2

OUT →

( edge21
OUT [b

1
OUT]

∨ edge22
OUT [b

2
OUT] )

edge12
OUT ≡ X

edge21
OUT ≡ ◇X

a1
OUT ≡ A2

OUT ≡ a

b1
OUT ≡ B2

OUT ≡ b

otherwise ≡ False

a

b b

A

B

B

u ⊧ a → ◇b
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Example

 Mutual structural recursion (without 

accumulating parameters) can be dealt with.

 For the detail of structural recursion over graphs, 

see [Buneman, Fernandez & Suciu 00]

 fun ev(            x ) =                    od(x)

 fun ev(            x ) =            od(x)

 fun od(            x ) =            ev(x)

 fun od(            x ) =                     ev(x)

a A A

b B

b

1 2

a

B

A

B

3

1

3 4

edge12
OUT ≡ a ∧ X edge23

OUT ≡ a ∧ ◇X

edge13
OUT ≡ a ∧ ◇X

edge31
OUT ≡ b ∧ ◇X

edge34
OUT ≡ b ∧ X edge41

OUT ≡ b ∧ ◇X
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Pre-Image Computation

 invk ( False, Δ ) = False

 invk ( ￢φ , Δ ) = ￢ invk ( φ, Δ )

 invk ( φ1∨φ2, Δ ) = invk ( φ1, Δ ) ∨ invk ( φ2, Δ )

 invk ( σ, Δ ) = σk
OUT

 invk ( ◇φ, Δ ) = ∨j∈{1..n} edgekj
OUT [X / invj(φ, Δ)]

 invk ( Y, Δ ) = Yk if  k∈S

 invk ( Y, Δ ) = μYk. invk( φ, Δ[Y→<S∪{k},φ>] )

where (S,φ) = Δ(Y)

 invk ( μY.φ , Δ ) = μYk. invk( φ, Δ[Y→<{k},φ>] )

Thm:  fT(G), <v,k>  ⊧ φ     iff    G,v ⊧ invk(φ, {})
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Example

edge11
OUT ≡ edge12

OUT ≡ edge21
OUT ≡ edge22

OUT ≡ ◇X

a1
OUT ≡ a2

OUT ≡ a

 f(G), <v,1>  ⊧ μY. (a ∧ ◇Y)

 G, v  ⊧ μY1. inv1( a ∧ ◇Y )

 G, v  ⊧ μY1.     a ∧ (◇inv1(Y) ∨ ◇inv2(Y))

 G, v  ⊧ μY1.   a ∧ (◇Y1 ∨ ◇μY2.inv2(a∧◇Y))

 G, v  ⊧ μY1. a ∧ (◇Y1 ∨ ◇μY2. a∧(◇inv1(Y)∨◇inv2(Y))

 G, v  ⊧ μY1. a ∧ (◇Y1 ∨ ◇μY2. a∧(◇Y1∨◇Y2))

OPEN QUESTION: can 

inv(μ) be shorter

than (n-1)!+1  ?
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Some Useful Results

Construction is analogous to inv(φ).

Theorem:

Modal-μ Definable Transduction is 

closed under composition.

Theorem:

Modal-μ Definable Transduction

⇔ MSO Definable & Bisimulation-Invariant.

It is known that Bisimulation-Invariant MSO transduction is

equal to structural recursion [Colcombet & Löding 04].
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Conclusion
 Modal-μ Definable Transduction

 Pre-Image of a modal-μ sentence is computable

 Structural recursion is expressible

 (Not in the talk)
 Node-erasing transformations

 Edge-labeled graphs

 Transformations with multiple inputs/outputs

 Future Work
 Implementation 

 Addition of Backward Modality
 ( G,v ⊧ ◆φ     iff     there’s (w,v)∈E s.t. G,w ⊧ φ )

 Syntactic necessary condition for edgeOUT

 More concise formula for inv(μY.φ)
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