Modal-µ Definable Graph Transduction

Kazuhiro Inaba

National Institute of Informatics, Japan

4th DIKU-IST Workshop, 2011

What We Want to Do

Verification of Graph-to-Graph Transformations

• e.g., Queries on Graph-Structured Database or Transformations of XML with "id" links

What We Want to Do

 Verification of Graph-to-Graph Transformations with respect to input/output specifications

Verification by Pre-Image (a.k.a. "weakest precondition" or "inverse type inference") Given **f** and φ_{OUT} , compute $inv_f(\varphi_{OUT})$ such that: for any graph G, $f(G) \models \phi_{OUT}$ iff $G \models inv_f(\phi_{OUT})$ $inv_{f}(\phi_{OUT})$ ϕ_{OUT} ΨIN Then "for any graph G, $G \models \phi_{IN} \Rightarrow f(G) \models \phi_{OUT}$ " "for any graph G, $G \models (\phi_{IN} \rightarrow inv_f(\phi_{OUT}))$ " iff i.e., $\phi_{IN} \rightarrow inv_f(\phi_{OUT})$ is *valid*

To Be More Concrete...

- Which logic can we use for specifying $\phi_{IN/OUT}$?
 - Must be strong enough to express useful conditions.
 - Must be weak enough to have **decidable validity**.
- What kind of transformation **f** can be verified ?
 - We must be able to compute the pre-image.

Our Approach

- Take Modal-µ Calculus as the specification logic
 - (At least for trees) capture all existing XML-Schemas
- Define a new model of graph transformation called *Modal-µ Definable Transduction*
 - Pre-image of modal-µ sentence can be fully automatically computed
 - Expressive enough to capture (unnested) structural recursion on graphs

Related Work

- MSO (Monadic 2nd-Order Logic) Definable Transduction
 - Overall structure is more or less the same.
 - Ours is a proposal to use Modal-µ instead of MSO
- Hoare-Style Verification of Imperative Programs
 - Ours don't deal with pointers or destructive updates.
 - Rather, it is more suitable for functional programs
 - Structural recursion is handled without any annotations

fun f({\$l: \$x}) = {cap(\$l) : g(\$x)} fun g({_: \$x}) = f(\$x) { ϕ_{IN} } f { ϕ_{OUT} }

```
{ \Phi_{IN} }
  p := root
  while p != null do
    q := p.next
    p.next := p.next.next
    p := q
    end
{ \Phi_{OUT} }
```

Outline

- Two Kinds of Logics on Graphs
 - Predicate Logics
 - Modal Logics
 - Why Modal-µ ?
- Review: Predicate-Logic Based Approach
 - MSO-Definable Graph Transduction [Courcelle 94]

8/35

- Our Work:
 - Modal-µ Definable Graph Transduction
 - Computation of Pre-Image

Graphs (in Today's Talk)

- Σ : Finite Nonempty Alphabet
- G = (V, E, π)

• V

Set of Nodes

9/35

- $E \subseteq V \times V$ Set of Directed Edges
- $\pi : V \rightarrow 2^{\Sigma}$ Labels on Nodes

Predicate Logics on Graphs

 $| \exists S. \phi \quad \text{``there's a set S that makes } \psi \text{ hold''} \\ | x \in S \quad \text{``x is in S''} \quad \textbf{MSC}$

We can define True, $\varphi \land \varphi \rightarrow \varphi$, $\forall x. \varphi$, and $\forall S. \varphi$.

Semantics

• For a graph $G=(V,E,\pi)$ and an environment Γ : Var \rightarrow V

- G, $\Gamma \models \sigma(x)$ iff $\sigma \in \pi(\Gamma(x))$ "node x is labeled σ "
- G, $\Gamma \models edge(x, y)$ iff $(\Gamma(x), \Gamma(y)) \in E$ "an edge connects x to y"
- **G**, $\Gamma \models \exists x.\phi$ iff there's $v \in V$ s.t. G, $\Gamma[x:v] \models \phi$

We Can Define: $\Box \varphi$ (dual of \diamondsuit) and vX. φ (GreatestFixPt)

Semantics

- For a graph $G=(V,E,\pi)$, an environment $\Gamma: Var \rightarrow 2^{v}$, and the current node $v \in V$
 - G, v, Γ ⊨ σ iff σ ∈ π(v) "current node is labeled σ"
 G, v, Γ ⊨ ◇φ iff there's w (v,w)∈E & G,w,Γ ⊨ φ "current node has an outgoing edge whose destination satisfies φ"
 G, v, Γ ⊨ μY. φ iff v ∈ LFP(F) where F(A) = {w∈V | G, w, Γ[Y:A] ⊨ φ}

Examples

- "From the node x, we can reach a σ-node"
 ∀S. ((x∈S ∧ ∀y.∀z.(y∈S ∧ (edge(y,z)→z∈S)))
 → ∃y. (y ∈ S ∧ σ(y)))
- "Confluence"

$\forall y. \forall z. (edge(x,y) \land edge(x,z)$ → $\exists w. (edge(y,w) \land edge(z,w)))$

- "From the current node, we can reach a σ -node" μ Y. ($\sigma \vee \diamond$ Y)
- "Confluence"

(No way to express it in Modal-µ)

MSO Definable (1-copying) Transduction [Courcelle 94]

A set of MSO formulas T =

- $\sigma_{OUT}(\mathbf{x})$ for each $\sigma \in \Sigma$
- edge_{OUT}(x,y)

defines a transformation f_T converting

 $G = (V, E, \pi)$ into $G' = (V, E', \pi')$ where

π'(v) = { σ | G, x:v ⊧ σ_{OUT}(x) }
E' = { (v, w) | G, x:v, y:w ⊧ edge_{OUT} (x,y) }

В

Α

Α

В

Example ($\Sigma = \{a, b, A, B\}$)

 $edge_{OUT}(x, y) \equiv$ $\exists z. (edge(x, z) \land edge(z, y))$ $a_{OUT}(x) \equiv b_{OUT}(x) \equiv False$ $A_{OUT}(x) \equiv a(x)$ $B_{OUT}(x) \equiv b(x)$

Expressiveness & Complexity

Modal-µ and MSO

- Complexity of Validity Checking
 - Modal-µ : EXPTIME-complete
 - MSO : Undecidable (Even in Trees, HyperEXP)
- Expressive Power
 - Modal-µ = Bisimulation-Invariant Subset of MSO [Janin & Walukiewicz 96]
 - "Bisimulation-Invariant" ≃
 "Physical equality of pointers cannot be checked"
 - Not a severe restriction for purely functional programs!

Modal-µ Definable (1-copying) Transduction

A set of Modal- μ formulas T =

- σ_{OUT} for each $\sigma \in \Sigma$
- edge_{OUT} an *existential* formula Fv={X} defines a transformation f_T converting $G = (V, E, \pi)$ into $G' = (V, E', \pi')$ where
- π'(v) = { σ | G, v ⊧ σ_{OUT} }
 E' = { (v, w) | G, v, X:{w} ⊧ edge_{OUT} }

Existential Formula

 A formula e with one free variable X is existential, if

for all $G=(V,E,\pi), v \in V, P \subseteq V$ G, v, X:P \models e iff $\exists w \in P$. G, v, X:{w} \models e

- Examples:
 - "X ∨ True" is not existential (Consider P={}).
 - " \diamond X" is existential.
 - " \Box X" is not (when v is a leaf node ...).
 - " σ " is not, but "X $\wedge \sigma$ " is.

Syntactic Conditionfor all $G=(V,E,\pi), v \in V, P \subseteq V$ $G, v, X:P \models e$ iff $\exists w \in P.$ $G, v, X:\{w\} \models e$

- Theorem: e is existential if it is in the following syntax
 - e ::= False | X | Y | e V e | \diamondsuit e | μ Y. e

 $e \wedge \phi$ where ϕ is any formula without free variables

(True, \neg , σ , \Box , and GFP must be "guarded" by _ ^ _)

OPEN QUESTION: is this a necessary condition ? (i.e., do all existential formulas have logically-equivalent forms in this syntax?)

Pre-Image Computation

For T = (σ_{OUT} , e_{OUT}), define

- inv(False) = False
- inv(¬φ) = ¬ inv(φ)
- inv($\phi_1 \lor \phi_2$) = inv(ϕ_1) \lor inv(ϕ_2)
- inv(σ)
- inv(\$\log \phi\$)
- inv(Y)
- inv(μ Y. ϕ) = μ Y. inv(ϕ)

Theorem: $f_T(G)$, $v \neq \phi$ iff G, $v \neq inv(\phi)$

= $edge_{OUT}$ [X / $inv(\phi)$]

 $= \sigma_{OUT}$

= Y

Proof of the Theorem

Theorem: $f_T(G), v \models \phi$ iff $G, v \models inv(\phi)$

- By Induction on φ. The essential case is:
 G, v ⊧ inv(◊φ)
 - iff $G,v \models edge_{OUT}[X / inv(\phi)]$ (definition of inv)
 - iff $\exists w (G,v,X:\{w\} \models edge_{OUT} and G,w \models inv(\phi))$ (ext)
 - iff $\exists w ((v,w) \text{ in } E' \text{ and } G, w \models inv(\phi))$ (def of E')
 - iff $\exists w ((v,w) \text{ in } E' \text{ and } f_T(G), w \models \phi)$ (IH)
 - iff f_T(G), v ⊧ ◇φ

(definition of \diamondsuit)

n-copying Modal-µ Definable Transduction

A set of Modal- μ formulas T =

- σ^{k}_{OUT} for each $\sigma \in \Sigma$, $k \in \{1 ... n\}$
- edge^{ik}_{OUT} for each i, $k \in \{1 ... n\}$: *existential* defines a transformation f_T converting $G = (V, E, \pi)$ into $G' = (V^*\{1...n\}, E', \pi')$ where

Example

• Mutual structural recursion (without accumulating parameters) can be dealt with.

- For the detail of structural recursion over graphs, see [Buneman, Fernandez & Suciu 00]
- fun ev($a \rightarrow x$) = $A \rightarrow od(x)$
- fun ev($b \rightarrow x$) = $b \rightarrow od(x)$
- fun od($a \rightarrow x$) = $A \rightarrow ev(x)$
- fun od($b \rightarrow x$) = ${}^{3}_{B} \rightarrow {}^{4}_{B} \rightarrow ev(x)$

$$\begin{array}{l} edge^{12}_{OUT} \equiv a \land X \quad edge^{23}_{OUT} \equiv a \land \diamondsuit X \\ edge^{13}_{OUT} \equiv a \land \diamondsuit X \\ edge^{31}_{OUT} \equiv b \land \diamondsuit X \\ edge^{34}_{OUT} \equiv b \land X \quad edge^{41}_{OUT} \equiv b \land \diamondsuit X \end{array}$$

Pre-Image Computation

- inv_k (False, Δ) = False
- $inv_k (\neg \phi, \Delta) = \neg inv_k (\phi, \Delta)$
- $inv_k (\phi_1 \lor \phi_2, \Delta) = inv_k (\phi_1, \Delta) \lor inv_k (\phi_2, \Delta)$
- $\operatorname{inv}_k(\sigma, \Delta) = \sigma^k_{OUT}$
- $\operatorname{inv}_k(\Diamond \phi, \Delta) = V_{j \in \{1..n\}} \operatorname{edge}_{j \in V} [X / \operatorname{inv}_j(\phi, \Delta)]$
- $inv_k (Y, \Delta) = Y_k$ if $k \in S$
- $\operatorname{inv}_k(Y, \Delta) = \mu Y_k$. $\operatorname{inv}_k(\varphi, \Delta[Y \rightarrow S \cup \{k\}, \varphi >])$
 - where $(S, \varphi) = \Delta(Y)$
- $inv_k (\mu Y.\phi, \Delta) = \mu Y_k$. $inv_k (\phi, \Delta[Y \rightarrow \{k\}, \phi>])$

Thm: $f_T(G)$, $\langle v, k \rangle \neq \phi$ iff $G, v \neq inv_k(\phi, \{\})$

Example $edge^{11}_{OUT} \equiv edge^{12}_{OUT} \equiv edge^{21}_{OUT} \equiv edge^{22}_{OUT} \equiv \diamondsuit X$ $a^{1}_{OUT} \equiv a^{2}_{OUT} \equiv a$ OPEN QUESTION: ca

i t

OPEN QUESTION: can inv(μ) be shorter than (n-1)!+1 ?

- f(G), <v,1> ⊧ µY. (a ∧ ◇Y)
- G, v $\models \mu Y_1$. inv₁(a $\land \diamondsuit Y$)
- G, v $\models \mu Y_1$. a $\land (\diamondsuit_{inv_1}(Y) \lor \diamondsuit_{inv_2}(Y))$
- G, v $\models \mu Y_1$. a $\land (\diamondsuit Y_1 \lor \diamondsuit \mu Y_2.inv_2(a \land \diamondsuit Y))$
- G, v $\models \mu Y_1$. a $\land (\diamondsuit Y_1 \lor \diamondsuit \mu Y_2$. a $\land (\diamondsuit_{inv_1}(Y) \lor \diamondsuit_{inv_2}(Y))$
- G, v $\models \mu Y_1$. a $\land (\diamondsuit Y_1 \lor \diamondsuit \mu Y_2$. a $\land (\diamondsuit Y_1 \lor \diamondsuit Y_2))$

Some Useful Results

Theorem: Modal-µ Definable Transduction is closed under composition.

Construction is analogous to $inv(\phi)$.

Theorem: Modal-µ Definable Transduction ⇔ MSO Definable & Bisimulation-Invariant.

It is known that Bisimulation-Invariant MSO transduction is equal to structural recursion [Colcombet & Löding 04].

Conclusion

- Modal-µ Definable Transduction
 - Pre-Image of a modal-µ sentence is computable
 - Structural recursion is expressible
 - (Not in the talk)
 - Node-erasing transformations
 - Edge-labeled graphs
 - Transformations with multiple inputs/outputs
- Future Work
 - Implementation
 - Addition of Backward Modality
 - $(G, v \models \mathbf{\Phi} \phi)$ iff there's $(w, v) \in \mathbf{E}$ s.t. $G, w \models \phi$
 - Syntactic necessary condition for edge_{OUT}
 - More concise formula for inv(μY.φ)

References

[Trakhtenbrot 50] Impossibility of an Algorithm for the Decision Problem for Finite Classes

• Satisfiability of FO on graphs is undecidable

[Meyer 74] Weak monadic second order theory of successor is not elementary-recursive

• Satisfiability of MSO on finite strings is Non-Elementary

[Robertson 74] Structure of Complexity in the Weak Monadic Second-Order Theories of the Natural Numbers

• Satisfiability of FO[<] on finite strings is Non-Elementary

[Lander 77] The Computational Complexity of Provability in Systems of Propositional Modal Logic

- Satisfiability of Modal Logic on graphs is PSPACE-complete
- [Emereson & Jutla 88] The Complexity of Tree Automata and Logics of Programs
 - Satisiability of Modal-µ on graphs is EXPTIME-complete
- [van Benthem 86] Essays in Logical Semantics
 - FO ∩ Bisim = Modal

[Janin & Walukiewicz 96] On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic

• MSO \cap Bisim = Modal- μ

[Colcombet & Löding 04] On the Expressiveness of Deterministic Transducers over Infinite Trees

• MSO-Definable Graph Transduction ∩ Bisim = Structural Recursion

[Courcelle 94] Monadic Second-Order Definable Graph Transductions: A Survey

• On MSO-Definable Transduction