
Kazuhiro Inaba
National Institute of Informatics, Japan

4th DIKU-IST Workshop, 2011

Modal-μ Definable

Graph Transduction

2/35

What We Want to Do

 Verification of Graph-to-Graph Transformations

 e.g., Queries on Graph-Structured Database

or Transformations of XML with “id” links

f
a

a

b

b

A

A

B

B

3/35

What We Want to Do

 Verification of Graph-to-Graph Transformations

with respect to input/output specifications

f
a

a

b

b

A

A

B
B

verify whether or not:

for any graph G, G ⊧ φIN ⇒ f(G) ⊧ φOUT

φIN
“From (a) we can

reach (a) again.”

φOUT
“From (A) we can

reach (A) again.”

4/35

Verification by Pre-Image
(a.k.a. “weakest precondition” or “inverse type inference”)

Given f and φOUT , compute invf(φOUT) such that:

for any graph G, f(G) ⊧ φOUT iff G ⊧ invf(φOUT)

Then “for any graph G, G ⊧ φIN ⇒ f(G) ⊧ φOUT”

iff “for any graph G, G ⊧ (φIN → invf(φOUT))”

i.e., φIN → invf(φOUT) is valid

f φOUT

invf(φOUT)

φIN

5/35

To Be More Concrete…

 Which logic can we use for specifying φIN/OUT ?

 Must be strong enough to express useful conditions.

 Must be weak enough to have decidable validity.

 What kind of transformation f can be verified ?

 We must be able to compute the pre-image.

6/35

Our Approach

 Take Modal-μ Calculus as the specification logic

 (At least for trees) capture all existing XML-Schemas

 Define a new model of graph transformation

called Modal-μ Definable Transduction

 Pre-image of modal-μ sentence can be

fully automatically computed

 Expressive enough to capture

(unnested) structural recursion on graphs

7/35

Related Work

 MSO (Monadic 2nd-Order Logic) Definable Transduction

 Overall structure is more or less the same.

 Ours is a proposal to use Modal-μ instead of MSO

 Hoare-Style Verification of Imperative Programs

 Ours don’t deal with pointers or destructive updates.

 Rather, it is more suitable for

functional programs

 Structural recursion is handled

without any annotations

{ φIN }

p := root

while p != null do

q := p.next

p.next := p.next.next

p := q

end

{ φOUT }

fun f({$l: $x}) = {cap($l) : g($x)}

fun g({_: $x}) = f($x)

{ φIN } f { φOUT }

8/35

Outline
 Two Kinds of Logics on Graphs
 Predicate Logics

 Modal Logics

 Why Modal-μ ?

 Review: Predicate-Logic Based Approach
 MSO-Definable Graph Transduction [Courcelle 94]

 Our Work:
 Modal-μ Definable Graph Transduction

 Computation of Pre-Image

9/35

Graphs (in Today’s Talk)

 Σ : Finite Nonempty Alphabet

 G = (V, E, π)

 V Set of Nodes

 E ⊆ V × V Set of Directed Edges

 π : V → 2Σ Labels on Nodes

b

a b

a

Σ = {a, b}

V = {

}

b

a b

a

π =

→ {a,b}

→ {a}

→ {b}

→ {}

10/35

Predicate Logics on Graphs

φ ::=

| False | ￢ φ | φ ∨ φ

| σ(x) (for σ∈Σ) “node x is labeled σ”

| edge(x, y) “an edge connects x to y”

| ∃x. φ “there’s x that makes ψ hold”

| ∃S. φ “there’s a set S that makes ψ hold”

| x ∈ S “x is in S”

FO

MSO

We can define True, φ∧φ , φ→φ, ∀x.φ, and ∀S.φ.

11/35

Semantics

 For a graph G=(V,E,π) and an environment

Γ : Var→V

G, Γ ⊧ σ(x) iff σ ∈ π(Γ(x))

“node x is labeled σ”

G, Γ ⊧ edge(x, y) iff (Γ(x), Γ(y)) ∈ E

“an edge connects x to y”

G, Γ ⊧ ∃x.φ iff there’s v∈V s.t. G,Γ[x:v] ⊧ φ

…

12/35

Modal Logics on Graphs

ψ ::=

| False | ￢ φ | φ ∨ φ

| σ (for σ∈Σ) “current node is labeled σ”

| ◇φ “current node has an outgoing edge

whose destination satisfies φ”

| X

| μX.φ “least fixpoint” (X must be in even # of ￢)

We Can Define: □φ (dual of ◇) and νX.φ (GreatestFixPt)

M

Mμ

13/35

Semantics

 For a graph G=(V,E,π), an environment

Γ : Var→2V, and the current node v ∈ V

G, v, Γ ⊧ σ iff σ ∈ π(v)

“current node is labeled σ”

G, v, Γ ⊧ ◇φ iff there’s w (v,w)∈E & G,w,Γ ⊧ φ

“current node has an outgoing edge

whose destination satisfies φ”

G, v, Γ ⊧ μY. φ iff v ∈ LFP(F)

where F(A) = {w∈V | G, w, Γ[Y:A] ⊧ φ}

…

14/35

Examples
 “From the node x, we can reach a σ-node”

∀S. ((x∈S ∧ ∀y.∀z.(y∈S ∧
(edge(y,z)→z∈S)))

→ ∃y. (y ∈ S ∧ σ(y)))

 “Confluence”

∀y. ∀z. (edge(x,y) ∧ edge(x,z)
→ ∃w. (edge(y,w) ∧ edge(z,w)))

 “From the current node, we can reach a σ-node”

μY. (σ ∨ ◇Y)

 “Confluence”
(No way to express it in Modal-μ)

15/35

MSO Definable (1-copying) Transduction

[Courcelle 94]

A set of MSO formulas T =

・ σOUT(x) for each σ∈Σ

・ edgeOUT(x,y)

defines a transformation fT converting

G = (V, E, π) into G’ = (V, E’, π’) where

π’(v) = { σ | G, x:v ⊧ σOUT(x) }

 E’ = { (v, w) | G, x:v, y:w ⊧ edgeOUT (x,y) }

16/35

Example (Σ = {a, b, A, B})

a

a

b

b

A

A

B

B

edgeOUT(x, y) ≡

∃z.(edge(x,z)∧ edge(z,y))

aOUT(x) ≡ bOUT(x) ≡ False

AOUT(x) ≡ a(x)

BOUT(x) ≡ b(x)

17/35

Pre-Image is Easily Obtained

a

a

b

b

A

A

B

B

∀x. A(x) → ∃y.

edge(x,y)

∧ A(y)

Inline

Expansion

∀x. a(x) → ∃y.

∃z.(edge(x,z) ∧ edge(z,y))

∧ a(y)

edgeOUT(x, y) ≡

∃z.(edge(x,z)∧ edge(z,y))

aOUT(x) ≡ bOUT(x) ≡ False

AOUT(x) ≡ a(x)

BOUT(x) ≡ b(x)

18/35

Expressiveness & Complexity

FO

MSO

Modal

Modal-μ

◇φ

μX.φ ∃S.φ

∃x.φ
PSPACE

EXPTIME

Undecidable

19/35

Expressiveness & Complexity

(on “tree-like” graphs)

FO

MSO

Modal

Modal-μ

◇φ

μX.φ ∃S.φ

∃x.φ
PSPACE

EXPTIME

NonElementary

20/35

Modal-μ and MSO
 Complexity of Validity Checking
 Modal-μ : EXPTIME-complete

 MSO : Undecidable (Even in Trees, HyperEXP)

 Expressive Power
 Modal-μ = Bisimulation-Invariant Subset of MSO

[Janin & Walukiewicz 96]

 “Bisimulation-Invariant” ≃
“Physical equality of pointers cannot be checked”

 Not a severe restriction for purely functional
programs!

21/35

Modal-μ Definable (1-copying) Transduction

A set of Modal-μ formulas T =

・ σOUT for each σ∈Σ

・ edgeOUT an existential formula Fv={X}

defines a transformation fT converting

G = (V, E, π) into G’ = (V, E’, π’) where

π’(v) = { σ | G, v ⊧ σOUT }

 E’ = { (v, w) | G, v, X:{w} ⊧ edgeOUT }

22/35

Example (Σ = {a, b, A, B})

a

a

b

b

A

A

B

B

A → ◇Aa → ◇◇a

edgeOUT ≡ ◇◇X
aOUT ≡ bOUT ≡ False

AOUT ≡ a

BOUT ≡ b

23/35

Existential Formula

 A formula e with one free variable X is

existential, if

 Examples:

 “X ∨ True” is not existential (Consider P={}).

 “◇X” is existential.

 “□X” is not (when v is a leaf node …).

 “σ” is not, but “X ∧ σ” is.

for all G=(V,E,π), v∈V, P⊆V

G, v, X:P ⊧ e iff ∃w∈P. G, v, X:{w} ⊧ e

24/35

Syntactic Condition

 Theorem:

e is existential if it is in the following syntax

e ::= False | X | Y | e ∨ e | ◇e | μY. e

| e ∧ φ where φ is any formula without free variables

(True, ￢, σ, □, and GFP must be “guarded” by _ ∧ _)

OPEN QUESTION: is this a necessary condition ?
(i.e., do all existential formulas have logically-equivalent forms in this syntax?)

for all G=(V,E,π), v∈V, P⊆V

G, v, X:P ⊧ e iff ∃w∈P. G, v, X:{w} ⊧ e

25/35

More Examples

 edgeOUT ≡ X edgeOUT ≡ a

 edgeOUT ≡ μY. ((X ∧ a) ∨ ◇Y)

edgeOUT ≡ X∧◇X

 edgeOUT ≡ μY. ((X ∧ a ∧ □b) ∨ (￢a ∧ ◇Y)

a a

b

a
a

a b

b

a

(Non-Examples)

26/35

Pre-Image Computation

For T = (σOUT, eOUT), define

 inv(False) = False

 inv(￢ φ) = ￢ inv(φ)

 inv(φ1 ∨ φ2) = inv(φ1) ∨ inv(φ2)

 inv(σ) = σOUT

 inv(◇ φ) = edgeOUT [X / inv(φ)]

 inv(Y) = Y

 inv(μY. φ) = μY. inv(φ)

Theorem: fT(G), v ⊧ φ iff G, v ⊧ inv(φ)

27/35

Proof of the Theorem

 By Induction on φ. The essential case is:

G, v ⊧ inv(◇φ)

iff G,v ⊧ edgeOUT [X / inv(φ)] (definition of inv)

iff ∃w (G,v,X:{w} ⊧ edgeOUT and G,w ⊧inv(φ)) (ext)

iff ∃w ((v,w) in E’ and G,w ⊧inv(φ)) (def of E’)

iff ∃w ((v,w) in E’ and fT(G),w ⊧φ) (IH)

iff fT(G), v ⊧ ◇φ (definition of ◇)

Theorem: fT(G), v ⊧ φ iff G, v ⊧ inv(φ)

28/35

n-copying

Modal-μ Definable Transduction

A set of Modal-μ formulas T =

・ σk
OUT for each σ∈Σ, k∈{1 .. n}

・ edgeik
OUT for each i, k∈{1 .. n} : existential

defines a transformation fT converting

G = (V, E, π) into G’ = (V*{1..n}, E’, π’) where

π’(<v,k>) = { σ | G, v ⊧ σk
OUT }

 E’ = { (<v,i>, <w,k>)

| G, v, X:{w} ⊧ edgeik
OUT }

29/35

Example (Σ = {a, b, A, B})

a

b b

<u,2> ⊧ A→◇b
u ⊧ A2

OUT →

(edge21
OUT [b

1
OUT]

∨ edge22
OUT [b

2
OUT])

edge12
OUT ≡ X

edge21
OUT ≡ ◇X

a1
OUT ≡ A2

OUT ≡ a

b1
OUT ≡ B2

OUT ≡ b

otherwise ≡ False

a

b b

A

B

B

u ⊧ a → ◇b

30/35

Example

 Mutual structural recursion (without

accumulating parameters) can be dealt with.

 For the detail of structural recursion over graphs,

see [Buneman, Fernandez & Suciu 00]

 fun ev(x) = od(x)

 fun ev(x) = od(x)

 fun od(x) = ev(x)

 fun od(x) = ev(x)

a A A

b B

b

1 2

a

B

A

B

3

1

3 4

edge12
OUT ≡ a ∧ X edge23

OUT ≡ a ∧ ◇X

edge13
OUT ≡ a ∧ ◇X

edge31
OUT ≡ b ∧ ◇X

edge34
OUT ≡ b ∧ X edge41

OUT ≡ b ∧ ◇X

31/35

Pre-Image Computation

 invk (False, Δ) = False

 invk (￢φ , Δ) = ￢ invk (φ, Δ)

 invk (φ1∨φ2, Δ) = invk (φ1, Δ) ∨ invk (φ2, Δ)

 invk (σ, Δ) = σk
OUT

 invk (◇φ, Δ) = ∨j∈{1..n} edgekj
OUT [X / invj(φ, Δ)]

 invk (Y, Δ) = Yk if k∈S

 invk (Y, Δ) = μYk. invk(φ, Δ[Y→<S∪{k},φ>])

where (S,φ) = Δ(Y)

 invk (μY.φ , Δ) = μYk. invk(φ, Δ[Y→<{k},φ>])

Thm: fT(G), <v,k> ⊧ φ iff G,v ⊧ invk(φ, {})

32/35

Example

edge11
OUT ≡ edge12

OUT ≡ edge21
OUT ≡ edge22

OUT ≡ ◇X

a1
OUT ≡ a2

OUT ≡ a

 f(G), <v,1> ⊧ μY. (a ∧ ◇Y)

 G, v ⊧ μY1. inv1(a ∧ ◇Y)

 G, v ⊧ μY1. a ∧ (◇inv1(Y) ∨ ◇inv2(Y))

 G, v ⊧ μY1. a ∧ (◇Y1 ∨ ◇μY2.inv2(a∧◇Y))

 G, v ⊧ μY1. a ∧ (◇Y1 ∨ ◇μY2. a∧(◇inv1(Y)∨◇inv2(Y))

 G, v ⊧ μY1. a ∧ (◇Y1 ∨ ◇μY2. a∧(◇Y1∨◇Y2))

OPEN QUESTION: can

inv(μ) be shorter

than (n-1)!+1 ?

33/35

Some Useful Results

Construction is analogous to inv(φ).

Theorem:

Modal-μ Definable Transduction is

closed under composition.

Theorem:

Modal-μ Definable Transduction

⇔ MSO Definable & Bisimulation-Invariant.

It is known that Bisimulation-Invariant MSO transduction is

equal to structural recursion [Colcombet & Löding 04].

34/35

Conclusion
 Modal-μ Definable Transduction

 Pre-Image of a modal-μ sentence is computable

 Structural recursion is expressible

 (Not in the talk)
 Node-erasing transformations

 Edge-labeled graphs

 Transformations with multiple inputs/outputs

 Future Work
 Implementation

 Addition of Backward Modality
 (G,v ⊧ ◆φ iff there’s (w,v)∈E s.t. G,w ⊧ φ)

 Syntactic necessary condition for edgeOUT

 More concise formula for inv(μY.φ)

35/35

References
[Trakhtenbrot 50] Impossibility of an Algorithm for the Decision Problem for Finite Classes

 Satisfiability of FO on graphs is undecidable

[Meyer 74] Weak monadic second order theory of successor is not elementary-recursive

 Satisfiability of MSO on finite strings is Non-Elementary

[Robertson 74] Structure of Complexity in the Weak Monadic Second-Order Theories of the Natural
Numbers

 Satisfiability of FO[<] on finite strings is Non-Elementary

[Lander 77] The Computational Complexity of Provability in Systems of Propositional Modal Logic

 Satisfiability of Modal Logic on graphs is PSPACE-complete

[Emereson & Jutla 88] The Complexity of Tree Automata and Logics of Programs

 Satisiability of Modal-μ on graphs is EXPTIME-complete

[van Benthem 86] Essays in Logical Semantics

 FO ∩ Bisim = Modal

[Janin & Walukiewicz 96] On the Expressive Completeness of the Propositional mu-Calculus with
Respect to Monadic Second Order Logic

 MSO ∩ Bisim = Modal-μ

[Colcombet & Löding 04] On the Expressiveness of Deterministic Transducers over Infinite Trees

 MSO-Definable Graph Transduction ∩ Bisim = Structural Recursion

[Courcelle 94] Monadic Second-Order Definable Graph Transductions: A Survey

 On MSO-Definable Transduction

