Modal- μ Definable Graph Transduction

Kazuhiro Inaba

National Institute of Informatics, Japan
$4^{\text {th }}$ DIKU-IST Workshop, 2011

What We Want to Do

- Verification of Graph-to-Graph Transformations

- e.g., Queries on Graph-Structured Database or Transformations of XML with "id" links

What We Want to Do

- Verification of Graph-to-Graph Transformations with respect to input/output specifications

Verification by Pre-Image

(a.k.a. "weakest precondition" or "inverse type inference")

Given f and $\varphi_{\text {out }}$, compute $\operatorname{inv}_{f}\left(\varphi_{\text {out }}\right)$ such that: for any graph $G, f(G) \vDash \varphi_{\text {OUT }} \operatorname{iff} G \vDash \operatorname{inv}_{f}\left(\varphi_{\text {OUT }}\right)$

Then "for any graph G, G $\vDash \varphi_{\text {IN }} \Rightarrow f(G) \vDash \varphi_{\text {OUT }}$ " iff "for any graph G, GF $\left(\varphi_{\text {IN }} \rightarrow \operatorname{inv}_{\mathrm{f}}\left(\varphi_{\text {out }}\right)\right)$ " i.e., $\varphi_{\text {IN }} \rightarrow \operatorname{inv}_{\mathrm{f}}\left(\varphi_{\text {out }}\right)$ is valid

To Be More Concrete...

- Which logic can we use for specifying $\varphi_{\text {in/out }}$?
- Must be strong enough to express useful conditions.
- Must be weak enough to have decidable validity.
- What kind of transformation f can be verified ?
- We must be able to compute the pre-image.

Our Approach

- Take Modal- μ Calculus as the specification logic - (At least for trees) capture all existing XML-Schemas
- Define a new model of graph transformation called Modal- μ Definable Transduction
- Pre-image of modal- μ sentence can be fully automatically computed
- Expressive enough to capture (unnested) structural recursion on graphs

Related Work

- MSO (Monadic 2nd-Order Logic) Definable Transduction
- Overall structure is more or less the same.
- Ours is a proposal to use Modal- μ instead of MSO
- Hoare-Style Verification of Imperative Programs
- Ours don't deal with pointers or destructive updates.
- Rather, it is more suitable for functional programs
- Structural recursion is handled without any annotations

$$
\begin{aligned}
& \text { fun } f(\{\$ \mathrm{l}: \$ \mathrm{x}\})=\{\operatorname{cap}(\$ \mathrm{l}): \mathrm{g}(\$ \mathrm{x})\} \\
& \text { fun } \mathrm{g}(\{-: \$ \mathrm{x}\})=\mathrm{f}(\$ \mathrm{x}) \\
& \left\{\varphi_{\text {IN }}\right\} \mathrm{f}\left\{\varphi_{\text {out }}\right\}
\end{aligned}
$$

```
{\varphi, 位
    p:= root
    while p!= null do
        q:= p.next
        p.next := p.next.next
        p:= q
    end
{ \varphi OUT }
```


Outline

- Two Kinds of Logics on Graphs
- Predicate Logics
- Modal Logics
- Why Modal- μ ?
- Review: Predicate-Logic Based Approach
- MSO-Definable Graph Transduction [Courcelle 94]
- Our Work:
- Modal- μ Definable Graph Transduction
- Computation of Pre-Image

Graphs (in Today’s Talk)

- Σ : Finite Nonempty Alphabet
- $G=(V, E, \pi)$
- V
- $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$
- $\pi: V \rightarrow 2^{\Sigma} \quad$ Labels on Nodes

Set of Nodes
Set of Directed Edges

$$
\begin{aligned}
\Sigma=\{a, b\} & \pi= \\
V=\{a b & \rightarrow\{a, b\} \\
a & \rightarrow\{a\} \\
b & \rightarrow\{b\} \\
& \rightarrow\}
\end{aligned}
$$

Predicate Logics on Graphs

$\varphi::=$

| False | $\neg \varphi \mid \varphi \vee \varphi$
$\mid \sigma(x)$ (for $\sigma \in \Sigma$) "node x is labeled σ " | edge(x, y) "an edge connects x to y " $\mid \exists x . \varphi \quad$ "there's x that makes ψ hold"
$\mid \exists$ S. φ "there's a set S that makes ψ hold" $\mid x \in S$ " x is in S "

We can define True, $\varphi \wedge \varphi, \varphi \rightarrow \varphi, \forall \times . \varphi$, and $\forall \mathcal{S} . \varphi$.

Semantics

- For a graph $G=(V, E, \pi)$ and an environment「 : Var \rightarrow V
- G, Г $=\sigma(x)$
iff $\sigma \in \pi(\Gamma(x))$
"node x is labeled σ "
- G, Γ F edge (x, y) iff $(\Gamma(\mathrm{x}), \Gamma(\mathrm{y})) \in \mathrm{E}$ "an edge connects x to y "
\bullet G, Г $\vDash \exists \mathbf{~} . ~ \varphi$ iff there's $v \in \mathrm{~V}$ s.t. $\mathrm{G},\lceil[\mathrm{x}: \mathrm{v}] \vDash \varphi$

Modal Logics on Graphs

$\psi::=$

False $|\neg \varphi| \varphi \vee \varphi$
| σ (for $\sigma \in \Sigma$) "current node is labeled σ "
| $\diamond \varphi$ "current node has an outgoing edge whose destination satisfies φ "

I X
I $\mu \mathrm{X} . \varphi$ "least fixpoint" (x must be in even \# of \rightarrow) $M \mu$

We Can Define: $\square \varphi($ dual of $\diamond)$ and $v X . \varphi($ GreatestFixPt)

Semantics

- For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \pi)$, an environment $\Gamma: V a r \rightarrow 2^{V}$, and the current node $v \in V$
- G, V, Г $\boldsymbol{F} \boldsymbol{\sigma} \quad$ iff $\sigma \in \Pi(v)$
"current node is labeled σ "
- $\mathbf{G}, \mathbf{V}, \Gamma \vDash \forall \boldsymbol{\varphi}$ iff there's $w(v, w) \in E \& G, w, \Gamma \vDash \varphi$
"current node has an outgoing edge whose destination satisfies φ "
$\bullet G, v, \Gamma \vDash \boldsymbol{\mu} . \boldsymbol{\varphi} \quad$ iff $v \in \operatorname{LFP}(F)$ where $F(A)=\{w \in V \mid G, w, \Gamma[Y: A] \vDash \varphi\}$

Examples

- "From the node x, we can reach a σ-node"
$\forall S$. ($(x \in S \wedge \forall y . \forall z .(y \in S \wedge$
(edge(y,z) $\rightarrow z \in S))$)

$$
\rightarrow \exists y .(y \in S \wedge \sigma(y)))
$$

-"Confluence"
$\begin{aligned} \forall y . & \forall z . ~(e d g e(x, y) ~ \wedge ~ e d g e(x, z) ~ \\ \rightarrow & \exists w .(e d g e(y, w) \wedge e d g e(z, w)))\end{aligned}$

- "From the current node, we can reach a σ-node"
$\mu \mathrm{Y} .(\sigma \vee \diamond \mathrm{Y})$
- "Confluence"
(No way to express it in Modal- μ)

MSO Definable (1-copying) Transduction

[Courcelle 94]

A set of MSO formulas $\mathbf{T}=$

- $\sigma_{\text {OUT }}(x) \quad$ for each $\sigma \in \Sigma$
- edge ${ }_{\text {out }}(x, y)$
defines a transformation f_{T} converting
$G=(V, E, \pi)$ into $G^{\prime}=\left(V, E^{\prime}, \Pi^{\prime}\right)$ where
- $\Pi^{\prime}(v)=\left\{\sigma \mid G, x: v \vDash \sigma_{\text {OUT }}(x)\right\}$
- $E^{\prime}=\left\{(v, w) \mid G, x: v, y: w ~\right.$ edge $\left._{\text {out }}(x, y)\right\}$

Example ($\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}\})$

B

Pre-Image is Easily Obtained

Expressiveness \& Complexity

Modal

 FO$\exists x . \varphi$
PSPACE
$\exists \mathrm{S} . \varphi$ MSO

Expressiveness \& Complexity (on "tree-like" graphs)

Modal

$\exists x . \varphi$

NonElementary

EXPTIME

$\mu \mathrm{X} . \varphi$
Modal- μ
$\exists \mathrm{S} . \varphi$ MSO

Modal- μ and MSO

- Complexity of Validity Checking
- Modal- μ : EXPTIME-complete
- MSO : Undecidable (Even in Trees, HyperEXP)
- Expressive Power
- Modal- μ = Bisimulation-Invariant Subset of MSO [Janin \& Walukiewicz 96]
- "Bisimulation-Invariant" \simeq
"Physical equality of pointers cannot be checked"
- Not a severe restriction for purely functional programs!

Modal- μ Definable (1-copying) Transduction

 A set of Modal $-\mu$ formulas $\mathrm{T}=$- $\sigma_{\text {Out }}$ for each $\sigma \in \Sigma$
- edge ${ }_{\text {out }}$ an existential formula $\mathrm{Fv}=\{\mathrm{X}\}$ defines a transformation f_{T} converting
$G=(V, E, \pi)$ into $G^{\prime}=\left(V, E^{\prime}, \Pi^{\prime}\right)$ where
- $\pi^{\prime}(v)=\left\{\sigma \mid G, v \vDash \sigma_{\text {OUT }}\right\}$
- $E^{\prime}=\left\{(v, w) \mid G, v, X:\{w\} \vDash\right.$ edge $\left._{\text {out }}\right\}$

Example ($\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}\})$

Existential Formula

- A formula e with one free variable X is existential, if

for all $G=(V, E, \pi), v \in V, P \subseteq V$

$$
G, v, X: P \vDash e \quad \text { iff } \quad \exists w \in P . G, v, X:\{w\} \vDash e
$$

- Examples:
- " $\mathrm{X} \vee$ True" is not existential (Consider $\mathrm{P}=\{ \}$).
- " $\diamond X$ " is existential.
- " $\square X$ " is not (when v is a leaf node ...).
- " σ " is not, but " $X \wedge \sigma$ " is.

Syntactic Condition

for all $G=(V, E, \pi), v \in V, P \subseteq V$
$G, v, X: P \vDash e \quad$ iff $\quad \exists w \in P . G, v, X:\{w\} \vDash e$

- Theorem:
e is existential if it is in the following syntax
$e::=$ False | X | Y |eve \| 厄e| $\mu \mathrm{Y} . \mathrm{e}$
$\| e \wedge \varphi \quad$ where φ is any formula without free variables
(True, \neg, σ, \square, and GFP must be "guarded" by _ ^ _)

3 Open Question: is this a necessary condition? (i.e., do all existential formulas have logically-equivalent forms in this syntax?)

More Examples

- edge $_{\text {out }} \equiv \mathrm{X}$

(Non-Examples)
edge $_{\text {OUT }} \equiv$ a

edge $_{\text {Out }} \equiv \mathrm{X} \wedge \diamond X$
- edge $_{\text {out }} \equiv \mu \mathrm{Y} .((\mathrm{X} \wedge \mathrm{a} \wedge \square \mathrm{b}) \vee(\neg \mathrm{a} \wedge \diamond \mathrm{Y})$

Pre-Image Computation

For $\mathrm{T}=\left(\sigma_{\mathrm{OUT}}, \mathrm{e}_{\mathrm{OUT}}\right)$, define

- inv(False) = False
- $\operatorname{inv}(\neg \varphi) \quad=\neg \operatorname{inv}(\varphi)$
- $\operatorname{inv}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{inv}\left(\varphi_{1}\right) \vee \operatorname{inv}\left(\varphi_{2}\right)$
- $\operatorname{inv}(\sigma) \quad=\sigma_{\text {OUT }}$
- $\operatorname{inv}(\diamond \varphi) \quad=\operatorname{edge}_{\text {OUT }}[X / \operatorname{inv}(\varphi)]$
- $\operatorname{inv}(\mathrm{Y}) \quad=Y$
- $\operatorname{inv}(\mu \mathrm{Y} . \varphi) \quad=\mu \mathrm{Y} . \operatorname{inv}(\varphi)$

Theorem: $f_{T}(G), v \vDash \varphi \quad \operatorname{iff} \quad G, v \vDash \operatorname{inv}(\varphi)$

Proof of the Theorem

Theorem: $f_{\mathrm{T}}(\mathrm{G}), v \vDash \varphi \quad \operatorname{iff} \quad G, v \vDash \operatorname{inv}(\varphi)$

- By Induction on φ. The essential case is:
$G, v \vDash \operatorname{inv}(\diamond \varphi)$
iff $G, v \vDash \operatorname{edge}_{\text {Out }}[X / \operatorname{inv}(\varphi)] \quad$ (definition of inv)
iff $\exists \mathrm{w}\left(\mathrm{G}, \mathrm{v}, \mathrm{X}:\{\mathrm{w}\} \vDash \mathrm{edge}_{\text {out }}\right.$ and $\mathrm{G}, \mathrm{w} \operatorname{kinv}(\varphi)$) (ext)
iff $\exists \mathrm{w}((\mathrm{v}, \mathrm{w})$ in E' and $G, w \operatorname{kinv}(\varphi)) \quad$ (def of E')
iff $\exists \mathrm{w}\left((\mathrm{v}, \mathrm{w})\right.$ in E^{\prime} and $\left.\mathrm{f}_{\mathrm{T}}(\mathrm{G}), \mathrm{w} \mathrm{F} \varphi\right)$
iff $f_{T}(G), v \vDash \diamond \varphi$
(definition of \diamond)
n-copying
Modal- μ Definable Transduction
A set of Modal- μ formulas T =
- $\sigma^{k}{ }_{\text {out }}$ for each $\sigma \in \Sigma, k \in\{1$.. $n\}$
- edge ${ }^{\text {ik }}{ }_{0 u t}$ for each $\mathrm{i}, \mathrm{k} \in\{1 . . \mathrm{n}\}$: existential defines a transformation f_{T} converting
$G=(V, E, \pi)$ into $G^{\prime}=\left(V^{*}\{1 . . n\}, E^{\prime}, \pi^{\prime}\right)$ where
- $\pi^{\prime}(\langle v, k\rangle)=\left\{\sigma \mid G, v \vDash \sigma^{k}{ }_{\text {out }}\right\}$
- $E^{\prime}=\{(\langle v, i>,<w, k>)$

$$
\left.G, v, X:\{w\} \text { F edgeik }{ }_{\text {out }}\right\}
$$

Example ($\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}\})$

Example

- Mutual structural recursion (without accumulating parameters) can be dealt with.
- For the detail of structural recursion over graphs, see [Buneman, Fernandez \& Suciu 00]
- fun $\operatorname{ev}(a \rightarrow x)={ }_{1}^{1} A{ }^{2} \rightarrow A \rightarrow \operatorname{od}(x)$
- fun $\operatorname{ev}(B \rightarrow x)=B \rightarrow \operatorname{od}(x)$
- fun od $(a \rightarrow x)={ }^{3} A \rightarrow e v(x)$
- fun od $(\mathrm{b} \rightarrow \mathrm{x})=3 \mathrm{~B} \rightarrow^{4} \rightarrow \mathrm{~B}(\mathrm{x})$

$$
\begin{aligned}
& \text { edge }{ }^{12}{ }_{\text {out }} \equiv \mathrm{a} \wedge \mathrm{X} \quad \text { edge }{ }^{23}{ }_{\text {out }} \equiv \mathrm{a} \wedge \diamond \mathrm{X} \\
& \text { edge }^{13}{ }^{\text {out }} \equiv \mathrm{a} \wedge \diamond \mathrm{X} \\
& \text { edge }^{31} \text { out } \equiv \mathrm{b} \wedge \diamond \mathrm{x} \\
& \text { edge }^{34}{ }^{\text {out }} \equiv \mathrm{b} \wedge \mathrm{X} \quad \text { edge }^{41}{ }_{\mathrm{out}} \equiv \mathrm{~b} \wedge \diamond \mathrm{X}
\end{aligned}
$$

Pre-Image Computation

- $\operatorname{inv}_{\mathrm{k}}($ False, $\Delta)=$ False
- $\operatorname{inv}_{\mathrm{k}}(\neg \varphi, \Delta)=\neg \operatorname{inv}_{\mathrm{k}}(\varphi, \Delta)$
- $\operatorname{inv}_{\mathrm{k}}\left(\varphi_{1} \vee \varphi_{2}, \Delta\right)=\operatorname{inv}_{\mathrm{k}}\left(\varphi_{1}, \Delta\right) \vee \operatorname{inv}_{\mathrm{k}}\left(\varphi_{2}, \Delta\right)$
- $\operatorname{inv}_{\mathrm{k}}(\sigma, \Delta)=\sigma^{\mathrm{k}}$ out
- $\operatorname{inv}_{\mathrm{k}}(\diamond \varphi, \Delta)=\mathrm{V}_{\mathrm{j} \in\{1 . . \mathrm{n}\}} \operatorname{edge}^{\mathrm{kj}}{ }_{\text {out }}\left[\mathrm{X} / \operatorname{inv}_{\mathrm{j}}(\varphi, \Delta)\right]$
- $\operatorname{inv}_{k}(Y, \Delta) \quad=Y_{k} \quad$ if $k \in S$
- $\operatorname{inv}_{k}(Y, \Delta) \quad=\mu Y_{k} \cdot \operatorname{inv}_{k}(\varphi, \Delta[Y \rightarrow\langle S \cup\{k\}, \varphi>])$ where $(S, \varphi)=\Delta(Y)$
- $\operatorname{inv}_{\mathrm{k}}(\mu \mathrm{Y} . \varphi, \Delta)=\mu \mathrm{Y}_{\mathrm{k}} \cdot \operatorname{inv}_{\mathrm{k}}(\varphi, \Delta[\mathrm{Y} \rightarrow\langle\{k\}, \varphi>])$

Chm: $f_{\mathrm{T}}(G),\left\langle v, k>\vDash \varphi \quad \operatorname{iff} \quad G, v \vDash \operatorname{inv}_{k}(\varphi,\{ \})\right.$

Example

edge ${ }^{11}{ }_{\text {OUT }} \equiv$ edge ${ }^{12}{ }_{\text {OUT }} \equiv$ edge ${ }^{21}{ }_{\text {OUT }} \equiv$ edge ${ }^{22}{ }_{\text {OUT }} \equiv \diamond X$ $\mathrm{a}^{1}{ }_{\text {OUT }} \equiv \mathrm{a}^{2}{ }_{\text {OUT }} \equiv \mathrm{a}$

- $f(G),\langle v, 1>\beta \mu Y$. $(a \wedge \diamond Y)$

Open Question: can $\operatorname{inv}(\mu)$ be shorter than $(\mathrm{n}-1)!+1$?

- $G, v \vDash \mu Y_{1} \cdot \operatorname{inv}_{1}(a \wedge \diamond Y)$
- $G, v \vDash \mu Y_{1}$. $\quad a \wedge\left(\diamond \operatorname{inv}_{1}(Y) \vee \diamond \operatorname{inv}_{2}(Y)\right)$
- $G, v \vDash \mu Y_{1} \cdot \quad a \wedge\left(\diamond Y_{1} \vee \diamond \mu Y_{2} \cdot \operatorname{inv}_{2}(a \wedge \diamond Y)\right)$
- $G, v \vDash \mu Y_{1} \cdot a \wedge\left(\diamond Y_{1} \vee \diamond \mu Y_{2} \cdot a \wedge\left(\diamond \operatorname{inv}_{1}(Y) \vee \diamond \operatorname{inv}_{2}(Y)\right)\right.$
- $G, v \vDash \mu Y_{1} \cdot a \wedge\left(\diamond Y_{1} \vee \diamond \mu Y_{2} . a \wedge\left(\diamond Y_{1} \vee \diamond Y_{2}\right)\right)$

Some Useful Results

Theorem:
 Modal- μ Definable Transduction is closed under composition.

Construction is analogous to $\operatorname{inv}(\varphi)$.

Theorem: Modal- μ Definable Transduction \Leftrightarrow MSO Definable \& Bisimulation-Invariant.

It is known that Bisimulation-Invariant MSO transduction is equal to structural recursion [Colcombet \& Löding 04].

Conclusion

- Modal- μ Definable Transduction
- Pre-Image of a modal- μ sentence is computable
- Structural recursion is expressible
- (Not in the talk)
- Node-erasing transformations
- Edge-labeled graphs
- Transformations with multiple inputs/outputs
- Future Work
- Implementation
- Addition of Backward Modality
- (G,v $\vDash \varphi$ iff there's $(w, v) \in E$ s.t. $G, w \vDash \varphi$)
- Syntactic necessary condition for edge out
- More concise formula for $\operatorname{inv(~} \mu \mathrm{Y} . \varphi$)

References

[Trakhtenbrot 50] Impossibility of an Algorithm for the Decision Problem for Finite Classes

- Satisfiability of FO on graphs is undecidable
[Meyer 74] Weak monadic second order theory of successor is not elementary-recursive
- Satisfiability of MSO on finite strings is Non-Elementary
[Robertson 74] Structure of Complexity in the Weak Monadic Second-Order Theories of the Natural Numbers
- Satisfiability of FO[<] on finite strings is Non-Elementary
[Lander 77] The Computational Complexity of Provability in Systems of Propositional Modal Logic
- Satisfiability of Modal Logic on graphs is PSPACE-complete
[Emereson \& Jutla 88] The Complexity of Tree Automata and Logics of Programs
- Satisiability of Modal- μ on graphs is EXPTIME-complete
[van Benthem 86] Essays in Logical Semantics
- FO \cap Bisim = Modal
[Janin \& Walukiewicz 96] On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic
- MSO \cap Bisim $=$ Modal $-\mu$
[Colcombet \& Löding 04] On the Expressiveness of Deterministic Transducers over Infinite Trees
- MSO-Definable Graph Transduction \cap Bisim = Structural Recursion
[Courcelle 94] Monadic Second-Order Definable Graph Transductions: A Survey
- On MSO-Definable Transduction

