Modal-p Definable

Graph Transduction

Kazuhiro Inaba

National Institute of Informatics, Japan

4th DIKU-IST Workshop, 2011

U 114

<
What We Want to Do

 Verification of Graph-to-Graph Transformations

e e.g., Queries on Graph-Structured Database
or Transformations of XML with “id” links

4 <
What We Want to Do

 Verification of Graph-to-Graph Transformations
with respect to input/output specifications

Pout

“From (A) we can
reach (A) again.’

Y

“From (a) we can
reach (a) again.”

verify whether or not:
for any graph G, G E ¢ = f(G) E @yt

g <
Verification by Pre-Image

(a.k.a. “weakest precondition” or “inverse type inference”)

for any graph G, f(G) E @yt iff G E inv(@oyt)

O g

‘Then “for any graph G, Gk ¢ = f(G) E @oy1” :
iff “for any graph G, G E (¢, — inve(Poyt))”

S i.e., @ — invy(@gyt) is valid g
- /

{Given f and @gyr, compute inv¢(@gy,7) such that: J

To Be More Concrete...

e Which logic can we use for specifying @ ,out ?

e Must be strong enough to express useful conditions.
* Must be weak enough to have decidable validity.

e What kind of transformation f can be verified ?

» We must be able to compute the pre-image.

<
Our Approach

o Take Modal-p Calculus as the specification logic
o (At least for trees) capture all existing XML-Schemas

e Define a new model of graph transformation
called Modal-u Definable Transduction

e Pre-image of modal-p sentence can be
fully automatically computed

e Expressive enough to capture
(unnested) structural recursion on graphs

5
Related Work

e MSO (Monadic 2M-Order Logic) Definable Transduction
e Overall structure is more or less the same.
e Ours is a proposal to use Modal-p instead of MSO

e Hoare-Style Verification of Imperative Programs
e Ours don’t deal with pointers or destructive updates.
e Rather, it is more suitable for

functional programs t T;'N-E o
e Structural recursion is handled | while p != null do
without any annotations q := p.next
p.next := p.next.next
fun f({SL: $x3) = {cap(SU) : g(5x)} p:=(
fun g({_: Sx3) = f(5x) end
{on} f {@our} { QPour } 1)

Outline

* Two Kinds of Logics on Graphs
 Predicate Logics
e Modal Logics
* Why Modal-p ?

e Review: Predicate-Logic Based Approach
e MSO-Definable Graph Transduction [Courcelle 94]

e Our Work:

e Modal-py Definable Graph Transduction
e Computation of Pre-Image

Graphs (in Today’s Talk)

e 2 : Finite Nonempty Alphabet

e G=(V, E, m)
oV Set of Nodes
eECV XYV Set of Directed Edges
omm 1V 22 Labels on Nodes
2={a, b} T=
2y v={en — {a,b}

o) == @O —13

ofe (b)) — {b}
Oy U

¢ ::

Predicate Logics on Graphs

False | @ | @V @

o(x) (for o€2) “node x is labeled ¢”
edge(x, y) “an edge connects x toy”

3X. ¢ “there’s x that makes y hold”

| 3S. ¢ “there’s a set S that makes g hold”
| XEeS “xisin§” MSO

We can define True, @AQp , o—@, Vx.@, and VS.@.

/

Semantics

e For a graph G=(V,E,) and an environment
[: Var—V

G, I' E 6(X) iff o e m((x))
“node x is labeled ¢”
oG, I F edge(x, y) iff (F'x), F(y)) €E

“an edge connects x to y”
oG, [E IX. iff there’sveVs.t. G,Ix:v] £ ¢

Modal Logics on Graphs

Y i:=
False | @ | @V ®
o (for oex) “current node is labeled ¢”

O “current node has an outgoing edge

whose destination satisfies ¢”

| X
| uX. “least fixpoint” (X must be in even # of —) MIJ

We Can Define: [Tp (dual of <) and vX.¢q (GreatestFixPt)

/

Semantics

e For a graph G=(V,E,), an environment
[: Var—2Y, and the current node v € V

°G,V,EO iff 6 € m(v)
“current node is labeled o”
oG, v, [E O iff there’sw (v,w)€E & G,w, E ¢

“current node has an outgoing edge
whose destination satisfies ¢”

oG, v, I EYY. (p iff veLFP®F)
where F(A) = {weV | G, w, I'[Y:A] k ¢}

Examples

* “From the node x, we can reach a c-node”

VS. ((XES A VY.VZ.(YES A
(edge(y,z)—Zz€S)))
— 3y. (y €S A c(y)))
o “Confluence”
Vy. Vz. (edge(X,y) A edge(x,z)
— 3Iw. (edge(y,w) A edge(z,w)))
* “From the current node, we can reach a 6-node”
uY. (6 v <Y)
o “Confluence”
(No way to express it in Modal-p)

>\
MSO Definable (1-copying) Transduction

[Courcelle 94]

A set of MSO formulas T =
* Opyt(X) for each o€X

+ edgegyr(x,y)
defines a transformation f; converting

G=(V,E,m) into G =(V, E’, m’) where

E’={(V, W) | G, x:v, y:w E edgeg,r (X,Y) }

edgeqyr(X, y) =
Jz.(edge(x,z)A edge(z,y))
Aour(X) = a(x)
Bout(X) £ b(x)

(VX.a(x) — 3y.

A a(y)

T

Pre-Image is Easily Obtained

edgeqyr(X, y) =
3z.(edge(x,z)A edge(z,y))
Aour(X) = a(x)
Bout(X) £ b(x)

3z.(edge(x,z) A edge(z,y)))

Inline

\Expansion

vx. A(x) — 3y.

D

edge(x,y)
AA(y)

Expressiveness & Complexity

)

Expressiveness & Complexity
(on “tree-like” graphs)

Modal-p and MSO

e Complexity of Validity Checking
e Modal-p : EXPTIME-complete
e MSO : Undecidable (Even in Trees, HyperkEXP)

e Expressive Power
e Modal-y = Bisimulation-Invariant Subset of MSO
[Janin & Walukiewicz 96]
e “Bisimulation-Invariant” =
“Physical equality of pointers cannot be checked”

e Not a severe restriction for purely functional
programs!

a

Modal-p Definable (1-copying) Transduction

A set of Modal-p formulas T =

* Oput for each o€z

-+ edgey,r an existential formula Fv={X}
defines a transformation f; converting
G=(V,E,m) into G =(V, E’, m’) where

emm’(v)={0| G, VEOur}
oE’ = { (V: W) I G: v, X:{W} F e(:IgeOUT}

Example (2 = {a, b, A, B})

a— OCa \

Existential Formula

e A formula e with one free variable X is
existential, if

for all G=(V,E,m), veV, PcV
G, v, X:PEe iff 3IweP. G,v, Xi{w} Ee
e Examples:

e “X v True” is not existential (Consider P={}).
o “OX” is existential.
o “LIX” isnot (whenvis a leaf node ...).

€

e “0 is not, but “X A 6” is.

Syntactic Condition

for all G=(V,E,m), veV, PcV
G, v, X:Pre iff 3IweP. G, v, X:{fw} Ee

e Theorem:
e is existential if it is in the following syntax

e::=False | X|Y]|]eve]| Oe | pY.e

| € A @ where @ is any formula without free variables

(True, —, o, U, and GFP must be “guarded” by _ A _)

n OPEN QUESTION: is this a necessary condition ?

K (i.e., do all existential formulas have logically-equivalent forms in this syntax?) /

>

MOre Examples (Non-Examples)
* edgegyr = X edgeoyr = 3

 edgegyr = HY. ((X A a) v OY) (D 0

/

-

Pre-lmage Computation

For T = (0oyr, €our), define

e inv(False) = False

o inv(— @) =—inv(Q)
cinv(@; V) =1nv(P;)Vinv(y,)
e inv(o) = Oour

o inv(< @) = edgeyyr [X / inv(yp)]
e inv(Y) =Y

o inv(HY. ¢) = Y. inv(Q)

{Theorem: f-(G),v E@ iff G,V Einv(y) J

/

o>
Proof of the Theorem

Theorem: (G),v k@ iff G,vkinv(gp)

e By Induction on . The essential case is:
G, v Einv(<o)
iff G,v Eedgeqy,r[X/ inv(9)] (definition of inv)
iff 3w (G,v,X:{w} E edgey,r and G,w Einv(®)) (ext)
iff 3w ((v,w) in E’ and G,w Einv(y)) (def of E’)
)
)

iff 3aw ((v,w) in E’ and f{(G),w E®) (IH
iff f(G),v EO® (definition of <

/

n-copying
Modal-p Definable Transduction

A set of Modal-p formulas T =

* OfquT for each o€z, ke{1 .. n}

- edge’,,r for each i, ke{1 .. n} : existential
defines a transformation f; converting
G=(V,E, m) into G’ = (V*{1..n}, E’, m’) where

emm’(<v,k>)={o | G, vEoKy}
oE’ = { (<v,i>, <w,k>)
| G’ V’ X:{W} F eClgeikOUT}

@ edge'?qyr =
edge?!y;r = OX

1 = A2 —
aloyr EA%T Ea

Q Q bloyr =B%ur =b

otherwise = False

/
:;W
/7 (edge*'ogur [blour |
{die\ [b%0ur])

<u,2> F A—><b

Example

e Mutual structural recursion (without
accumulating parameters) can be dealt with.

e For the detail of structural recursion over graphs,

see [Buneman, Fernandez gt Suciu 00]

o fun ev((a = x) 1‘—».—>od()
* fun ev((b = x) =3 od(x)
e fun od(@_y) = @-p ev(x)
e fun od(@_,) =3 ev(x)

edge12OUT ZaA X edge?3,,;r = a A OX
edge3 ;1= a A OX
edge’d’y it = b A OX
_edge¥,,rEbAX edge*y;;=bAOX)

Pre-lmage Computation
e inv, (False, A) =False
cinvi(—@,A) =—inv (¢, A)
* iV (@V, A) =invy (g, A) Vinv, (@, A)

e invi (o, A) = 0*our

o inv, (O, A) = Vgy.ny edge¥oyr [X 7 invy(@, 4)]
® ind(Y, A) - Yk if kES

e inv, (Y, A) = 4Y,. inv, (@, A[Y—<SU{k},®>])

where (S,¢) = A(Y)
o inv, (pY. , A) = pY,. inv (@, A[lY—<{k},¢>])

Thm: £(G), <vk> E@ iff G,V Einvy(e, {})]/

-

>
Example

edgeyyr = edge'’yyr = edge?!yr = edge?’gyr = OX

1 = A2 =
d’oyr = A°gur = 4 OPEN QUESTION: can

inv(y) be shorter

s £(G), < 1> E pY. (@A OY) than (n-1)1+1 7

e G,v E MY . invy(anY)

e G,v E UY,. aA(&invy(Y) v &invy(Y))

e G, v E UY,. anA (Y, Vv OuY,.inv,(andy))

e G,V HY . a A (Y, V OpY,. an(Oinv, (Y)vOinv,(Y))
e G, v E UY,. a A (OY, v OuY,. an(OY,vOY,))

E
E
E
E

Some Useful Results

/. N
Theorem:
Modal-p Definable Transduction is
_closed under composition. y

Construction is analogous to inv(p).

p
Theorem:

Modal-py Definable Transduction

& MSO Definable & Bisimulation-lnvariant./

It is known that Bisimulation-Invariant MSO transduction is
equal to structural recursion [Colcombet & Loding 04].

/

Conclusion

» Modal-p Definable Transduction
* Pre-Image of a modal-p sentence is computable
e Structural recursion is expressible
e (Not in the talk)
Node-erasing transformations
Edge-labeled graphs
Transformations with multiple inputs/outputs
e Future Work
e Implementation
o Addition of Backward Modality
(G,vE ¢ iff there’s (w,v)EE s.t. G,WE @)
e Syntactic necessary condition for edget
e More concise formula for inv(pY.)

References

[Trakhtenbrot 50] Impossibility of an Algorithm for the Decision Problem for Finite Classes
o Satisfiability of FO on graphs is undecidable

[Meyer 74] Weak monadic second order theory of successor is not elementary-recursive
o Satisfiability of MSO on finite strings is Non-Elementary

[Robertslc)m 74] Structure of Complexity in the Weak Monadic Second-Order Theories of the Natural
Numbers

o Satisfiability of FO[<] on finite strings is Non-Elementary
[Lander 77] The Computational Complexity of Provability in Systems of Propositional Modal Logic
e Satisfiability of Modal Logic on graphs is PSPACE-complete
[Emereson & Jutla 88] The Complexity of Tree Automata and Logics of Programs
o Satisiability of Modal-p on graphs is EXPTIME-complete
[van Benthem 86] Essays in Logical Semantics
e FO N Bisim = Modal

[Janin & Walukiewicz 96] On the Expressive Completeness of the Propositional mu-Calculus with
Respect to Monadic Second Order Logic

e MSO N Bisim = Modal-p

[Colcombet & Loding 04] On the Expressiveness of Deterministic Transducers over Infinite Trees
e MSO-Definable Graph Transduction N Bisim = Structural Recursion

[Courcelle 94] Monadic Second-Order Definable Graph Transductions: A Survey
¢ On MSO-Definable Transduction

