Compact Representation for Answer Sets

 of n-ary Regular Queriesby Kazuhiro Inaba (National Institute of Informatics, Japan) and Hauro Hosoya (The University of Tokyo)

CIAA 2009, Sydney

BACKGROUND

N-ary Query over Trees

- ... is a function that
- Takes a tree t as an input, and
- Returns some set of n-tuples of nodes of t
- Examples:
- 1-ary: "select the leftmost leaf node"
- 2-ary: "select all pairs (x, y) s.t. x is taken from the left subtree of the root, and y is from the right"
- 0 -ary: "is the number of leaves odd?"

BACKGROUND

N-ary Regular Queries over Trees

- Query definable by a tree automaton
- Regular
- iff definable by Monadic $2^{\text {nd }}$-Order Logic
- iff definable by Modal μ-Calculus
- iff definable by Monadic Datalog
- iff definable by Boolean Attribute Grammar

BACKGROUND

Efficiency of Regular Queries

- Given a query q (represnted by an automaton \mathcal{A}), and an input tree t, we can compute $q(t)$ in...
- $\mathbf{O}(|\boldsymbol{A}|$. $(|t|+|q(t)|))$ time [Flum \& Frick \& Grohe 2002]
- (In some sense) optimal

"Optimal", but...

Still Big

- o(\mid | \mid-($(\mathrm{t}|+|\mathrm{q}(\mathrm{t})|)$)
$-\sim|t|^{n}$ for n-ary queries in the worst case
- In some applications, we do not need the concrete list of all the answers
- At least, don't need to list up them all at the same time

Input Tree size: IN

\section*{| Run Query |
| :---: |
| O(IN + OUT) |
| Today's Topic |}

"SRED"
Data structure
size: $O(\min (I N, O U T))$
isMember: $\mathbf{O}(\mathrm{H})$
$\underset{\text { "Projection": } \mathbf{O (H - a)}}{\text { Get-Size: } \mathbf{O (\operatorname { m i n } (\mathbf { I } , \mathbf { O }))}}$
"Selection": O(H)

Outline

(1) Introduction

- N-ary Regular Queries \& Their Complexity
(2) Application
- When Do We Need Compact Representation?
(3) Algorithm
- Query Algorithm (Suitable for "SRED" Repr.)
- "SRED" Data Structure
(4) Conclusion

APPLICATION (IN XML TRANSLATION)

"Relative" Queries in XML

<list>
\{foreach x s.t. $\phi(x)$:
<item>\{x\}</item>
<sublist>
\{foreach y s.t. $\psi(x, y)$: <item>\{y\}</item>\}
</sublist>\}
</1ist>

- Select y relative to x
- In many cases, \# of y for each x is constant. E.g.,
- "select the child labeled <name>", "select next <h2>"

Two Evaluation Stategies

```
<list>
    {foreach x s.t. }\phi(x)
        <item>{x}</item>
        <sub7ist>
                                {foreach y s.t. }\psi(x,y)
                            <item>{y}</item>}
        </sublist>}
</list>
```


A := the answer set of
1-ary query $\{x \mid \Phi(x)\}$
for each \mathbf{x} in A :
$B:=$ the answer set of
1-ary query $\{y \mid \boldsymbol{\Psi}(x, y)\}$ for each y in B : print <item>y</item>

A := the answer set of
1-ary query $\{x \mid \Phi(x)\}$
C := the answer set of
2-ary query $\{(x, y)$ | $\Phi(x) \& \Psi(x, y)\}$
for each x in A :

$$
\begin{aligned}
& B:=\{y \mid(x, y) \in C\}=C_{[1: x]} \\
& \text { for each } y \text { in } B: \\
& \quad \text { print <item>y</item>; }
\end{aligned}
$$

$\mathrm{O}\left(|t|^{2}\right)$ time in "common" cases (= many x , constant y)

A := the answer set of 1-ary query $\{x \mid \Phi(x)\}$
for each \mathbf{x} in A :
$B:=$ the answer set of 1-ary query $\{y \mid \boldsymbol{\Psi}(x, y)\}$ for each y in B : print <item>y</item>

O(|t|) time
in "common" cases

A := the answer set of
1-ary query $\{x \mid \Phi(x)\}$
C := the answer set of
2-ary query $\{(x, y)$ | $\Phi(x) \& \Psi(x, y)\}$
for each x in A :

$$
\begin{aligned}
& \mathrm{B}:=\{y \mid(x, y) \in C\}=C_{[1: x]} \\
& \text { for each } \mathrm{y} \text { in } \mathrm{B}: \\
& \quad \text { print <item>y</item>; }
\end{aligned}
$$

$\mathrm{O}\left(|\mathrm{t}|^{2}\right)$ time
O(|t|) time in "common" cases in "common" cases
$\mathrm{O}\left(|\mathrm{t}|^{2}\right)$ time $\mathrm{O}(|\mathrm{t}|)$ space in "worst" cases (= many x , many y)

A := the answer set of 1-ary query $\{x \mid \Phi(x)\}$
for each \mathbf{x} in A :
$B:=$ the answer set of 1-ary query $\{y \mid \boldsymbol{\Psi}(x, y)\}$ for each y in B: print <item>y</item>
$\mathrm{O}\left(|t|^{2}\right)$ time $\mathrm{O}\left(|t|^{2}\right)$ space in "worst" cases

A := the answer set of
1-ary query $\{x \mid \Phi(x)\}$
C := the answer set of
2-ary query $\{(x, y)$ |
$\Phi(x) \& \Psi(x, y)\}$
for each x in A :

$$
\begin{aligned}
& \mathrm{B}:=\{y \mid(x, y) \in C\}=C_{[1: x]} \\
& \text { for each } y \text { in } B: \\
& \quad \text { print <item>y</item>; }
\end{aligned}
$$

$\mathrm{O}\left(|\mathrm{t}|^{2}\right)$ time in "common" cases

O(|t|) time in "common" cases
$\mathrm{O}\left(|t|^{2}\right)$ time $\mathrm{O}(|\mathrm{t}|)$ space in "worst" cases (= many x , many y)

A: = the answer set of If We Use "SRED" to Represent the Set C ...!!
$\mathrm{O}(|\mathrm{t}|)$ time
in "common" cases
$\mathrm{O}\left(|t|^{2}\right)$ time $\mathrm{O}(|t|)$ space in "worst" cases
$\mathrm{O}\left(\mathrm{t} \mathrm{t}^{2}\right)$ time $\mathrm{O}\left(|\mathrm{t}|^{2}\right)$ space in "worst" cases

A := the answer set of
1-ary query $\{x \mid \Phi(x)\}$
C := the answer set of
2-ary query $\{(x, y)$ |
$\Phi(\mathrm{x}) \& \Psi(\mathrm{x}, \mathrm{y})\}$
for each x in A :

$$
B:=\{y \mid(x, y) \in C\}=C_{[1: x]}
$$ for each y in B :

print <item>y</item>;

IMPLEMENTATION OF REGULAR QUERIES
USING "SRED"

(Bottom-up Deterministic) Tree Automaton

(For simplicity, we limit our attention to binary trees)

- $\mathcal{A}=\left(\Sigma_{0}, \Sigma_{2}, \mathrm{Q}, \mathrm{F}, \delta\right)$
$-\Sigma_{0}$: finite set of leaf labels
$-\Sigma_{2}$: finite set of internal-node labels
-Q : finite set of states
$-\delta$: transition function

$$
\left(\Sigma_{0} \cup \Sigma_{2} \times Q \times Q\right) \rightarrow Q
$$

$-\mathrm{F} \subseteq \mathrm{Q}$: accepting states

Example (0-ary): OddLEAVES

- $Q=\left\{q_{0}, q_{1}\right\}, F=\left\{q_{1}\right\}$
- $\delta(\mathrm{L})=\mathrm{q}_{1}$
- $\delta\left(B, q_{0}, q_{0}\right)=q_{0}$
- $\delta\left(B, q_{0}, q_{1}\right)=q_{1}$
- $\delta\left(B, q_{1}, q_{0}\right)=q_{1}$
- $\delta\left(B, q_{1}, q_{1}\right)=q_{0}$

Tree Automaton for Querying

- For any n-ary regular query Φ on trees over $\Sigma_{0} \cup \Sigma_{2}$
- There exists a BDTA \mathcal{A}_{Φ} on trees over $\Sigma_{0} \times B^{n}, \Sigma_{2} \times B^{n}$ (where $B=\{0,1\}$) s.t.
$-\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \in \Phi(\mathrm{t})$
- iff
- \mathcal{A}_{Φ} accepts the tree mark $\left(\mathrm{t}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$
mark $(\mathrm{t}, \ldots)=\mathrm{t}$ with the i -th B component is 1 at vi and 0 at other nodes

Example (1-ary): LEFTMOST

- $Q=\left\{q_{0}, q_{1}\right\}, F=\left\{q_{1}\right\}$
- $\delta(\mathrm{LO})=q_{0}$
- $\delta(\mathrm{L1})=\mathrm{q}_{1}$
- $\delta\left(B 0, q_{1}, q_{0}\right)=q_{1}$
- $\delta($ otherwise $)=q_{0}$

NA: Naïve n-ary Query Algorithm

- For each tuple $\left(\mathrm{v}_{1}, . ., \mathrm{v}_{\mathrm{n}}\right) \in \operatorname{Node}(\mathrm{t})^{\mathrm{n}}$
- Generate mark($\mathrm{t}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$)
- Run \mathcal{A}_{Φ} on it
- If accepted, then $\left(v_{1}, \ldots, v_{n}\right)$ is one of the answer
- Run \mathcal{A}_{Φ} on $\mathrm{O}\left(|t|^{\mathrm{n}}\right)$ times $=\mathrm{O}\left(|t|^{\mathrm{n}+1}\right)$

OA: One-Pass Algorithm

- For each combination of node v, state q, and $b_{1}, \ldots, b_{n} \in B$
- Compute the set

$$
\begin{aligned}
& r_{v}\left(q, b_{1}, \ldots, b_{n}\right) \subseteq(\operatorname{Node}(t) \cup\{\perp\})^{n} \text { s.t. } \\
& -\left(v_{1}, \ldots, v_{n}\right) \in r_{v}\left(q, b_{1}, \ldots ., b_{n}\right) \\
& \text { iff } \\
& \left(\forall i: \text { "descendant } v_{i} \text { of } v\right. \text { is marked and } \\
& \left.b_{i}=1 \text { " or " } v_{i}=\perp \text { and } b_{i}=0 \text { " }\right) \Rightarrow \text { "automaton } \\
& \text { assigns } q \text { at node } v^{\prime \prime}
\end{aligned}
$$

Example (2-ary): LEFT\&RIGHT

- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, F=\left\{q_{3}\right\}$
- $\delta(\mathrm{LOO})=\delta\left(\mathrm{B} 10, \mathrm{q}_{0}, \mathrm{q}_{0}\right)=\mathrm{q}_{0}$

- $\delta(L 10)=\delta\left(B 10, q_{0}, q_{0}\right)=q_{1}$
- $\delta(\mathrm{LO})=\delta\left(\mathrm{BO1}, \mathrm{q}_{0}, \mathrm{q}_{0}\right)=\mathrm{q}_{2}$
- $\delta\left(B 00, q_{1}, q_{2}\right)=q_{3}$
- $\delta\left(B 00, q_{0}, q_{i}\right)=\delta\left(B 00, q_{i}, q_{0}\right)=q_{i}$ (for $\left.i=1,2\right)$
- δ (otherwise) $=q_{4}$

```
\delta(L00) = \delta(B10, q}\mp@subsup{q}{0}{},\mp@subsup{q}{0}{})=\mp@subsup{q}{0}{
\delta(L10) = \delta(B10, q0, q})=\mp@subsup{q}{1}{
\delta(L01) = \delta(B01, q0, q})=\mp@subsup{q}{2}{
\delta(BOO, q1, q2 ) = qu
\delta(BOO, qo, q2 ) = q
```


$\delta(L 00)=\delta\left(B 10, q_{0}, q_{0}\right)=q_{0}$ $\delta(L 10)=\delta\left(B 10, q_{0}, q_{0}\right)=q_{1} \quad r_{v 3}\left(q_{0}, 00\right)$
$\delta(L 01)=\delta\left(B 01, q_{0}, q_{0}\right)=q_{2}$ $\delta\left(B 00, q_{1}, q_{2}\right)=q_{3}$
$\delta\left(B 00, q_{0}, q_{2}\right)=q_{2}$
$=r_{v 4}\left(\mathrm{q}_{0}, 00\right) *\{(\perp, \perp)\}^{*} r_{v 5}\left(\mathrm{q}_{0}, 00\right)$
$=\{(\perp, \perp)\}$
$\mathrm{r}_{\mathrm{v} 3}\left(\mathrm{q}_{3}, 11\right)$
$=r_{v 4}\left(q_{1}, 00\right) *\{(\perp, \perp)\}^{*} r_{v 5}\left(q_{2}, 11\right)$
$\cup r_{\mathrm{v} 4}\left(\mathrm{q}_{1}, 01\right) *\{(\perp, \perp)\}^{*} \mathrm{r}_{\mathrm{v} 5}\left(\mathrm{q}_{2}, 10\right)$
$\cup r_{\mathrm{v} 4}\left(\mathrm{q}_{1}, 10\right)^{*}\{(\perp, \perp)\}^{*} \mathrm{r}_{\mathrm{v} 5}\left(\mathrm{q}_{2}, 01\right)$
$(=\{(\mathrm{v} 4, \perp)\} *\{(\perp, \perp)\} *\{(\perp, \mathrm{v})\}$
$\cup r_{v 4}\left(q_{1}, 11\right) *\{(\perp, \perp)\}^{*} r_{v 5}\left(q_{2}, 01\right)$
$=\{(\mathrm{v} 4, \mathrm{v} 5)\}$
$r_{v 3}\left(q_{2}, 01\right)$
$=r_{v 4}\left(q_{0}, 00\right) *\{(\perp, v 3)\}^{*} r_{v 5}\left(q_{0}, 00\right)$ $\cup r_{v}\left(\mathrm{q}_{0}, 00\right) *\{(\perp, \perp)\}^{*} r_{v 5}\left(\mathrm{q}_{2}, 01\right)$
$\cup \mathrm{r}_{\mathrm{v} 4}\left(\mathrm{q}_{2}, 01\right) *\{(\perp, \perp)\}^{*} \mathrm{r}_{\mathrm{v} 5}\left(\mathrm{q}_{2}, 00\right)$ $\cup r_{v}\left(\mathrm{q}_{0}, 00\right) *\{(\perp, \perp)\}^{*} r_{v 5}\left(\mathrm{q}_{2}, 01\right)$
$=\{(\perp, v 3),(\perp, v 4),(\perp, v 5)\}$
$r_{v 4}, r_{v 5}: \int L \leftarrow v_{4} L \leftarrow \mathbf{v}_{5}$ similar to $r_{\mathrm{v} 2}$
$r_{\mathrm{v} 2}\left(\mathrm{q}_{0}, 00\right)=\{(\perp, \perp)\}$ $r_{v 2}\left(\mathrm{q}_{1}, 10\right)=\{(\mathrm{v} 2, \perp)\}$ $r_{v 2}\left(\mathrm{q}_{2}, 01\right)=\{(\perp, \mathrm{v} 2)\}$ $r_{v 2}\left(\mathrm{~g}_{4}, 11\right)=\{(\mathrm{v} 2, \mathrm{v} 2)\}$ $r_{v 2}\left(_, \quad _\right)=\{ \}$
$L-\mathrm{V}_{2}$
B $-v_{3}$...

Example (2-ary): LefT\&RIGHT

- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, F=\left\{q_{3}\right\}$
- Eventually...

Time Complexity of OA: $\mathrm{O}\left(|t|^{\mathrm{n}+1}\right)$

- One-pass traversal: |t|
- For each node,
$-|\mathrm{Q}| \times 2^{\mathrm{n}}$ entries of r are filled
- Need $O\left(|Q|^{2} \cdot 3^{n}\right) \cup$ and * operations
- Each operand set of U and * may be as large as $\mathrm{O}\left(|t|^{\mathrm{n}}\right)$
\rightarrow each operation takes $\mathrm{O}\left(|\mathrm{t}|^{\mathrm{n}}\right)$ time in the worst case, as long as the "set"s are represented by usual data structure (lists, rbtrees,...)

Time Complexity of OA: $\mathrm{O}\left(|t|^{\mathrm{n}+1}\right)$

- One-pass traversal: |t|
- For each node, Constant wrt |t|I!
$-|\mathrm{Q}| \times 2^{\mathrm{n}}$ entries of r are filled
Need $\mathrm{O}\left(|\mathrm{Q}|^{2} \cdot 3^{n}\right) \cup$ and * operations
- Each operand set of U and * may be as large as $\mathrm{O}\left(|t|^{n}\right)$

What happens if we have a set representation with O(1) operations??

Time Complexity of OA: $\mathrm{O}\left(|t|^{\mathrm{n}+1}\right)$

- One-pass traversal: |t|
- For each node, Constant wrt |t|!
$-|\mathrm{Q}| \times 2^{\mathrm{n}}$ entries of r are filled
Need $\mathrm{O}\left(|\mathrm{Q}|^{2} \cdot 3^{n}\right) \cup$ and * operations
- Each operand set of U and * may be as large as $\mathrm{O}\left(|t|^{n}\right)$

What happens if we have a set representation with O(1) operations??
$\mathrm{O}(|\mathrm{t}|)$ Time
Quering!

!! Our Main Idea !!

- SRED:

Set Representation by Expression Dags

- Set is Repr'd by a Symbolic Expression Producing it

Instead of $\{(v 2, v 3),(v 2, v 4),(v 2, v 5)\}$
$L-v_{2} B-v_{3}$

$$
L-v_{4}\left(L-v_{5}\right.
$$

BNF for SRED (Simplified)

- SET ::=
- Empty

$$
\begin{aligned}
& --\{ \} \\
& --\{(\perp, \ldots, \perp)\}
\end{aligned}
$$

- Unit
- NESET
- NESET ::=
- Singleton(ELEMENT)
- DisjointUnion(NESET, NESET)
- Product(NESET, NESET)

O(OUT) Enumeration of SRED (or, "decompression")

- Simple Recursion is Enough! (assumption: U is $O(1)$, * is O (out))
- eval(Empty) $=\{ \}$
- eval(Unit) $\quad=\{(\perp, \ldots, \perp)\}$
- eval(Singleton(e)) $=\{e\}$
- eval(DisjointUnion $\left.\left(s_{1}, s_{2}\right)\right)=\operatorname{eval}\left(s_{1}\right) \cup \operatorname{eval}\left(s_{2}\right)$
$-\operatorname{eval}\left(\operatorname{Product}\left(s_{1}, s_{2}\right)\right)=\operatorname{eval}\left(s_{1}\right) * \operatorname{eval}\left(s_{2}\right)$
- (NOTE: A bit more clever impl. enables O(OUT) time \& O(1) working space)

For Advanced Operations...

- Actually we add a little more information on each SRED node
- "Type"
- "Origin"

"Selection" on SRED

- $\mathrm{S}_{[i: \mathrm{v}]} \stackrel{\text { def }}{=}\left\{\left(\mathrm{v}_{1}, \ldots, \mathrm{~V}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}+1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right) \mid\right.$

$$
\left.\left(v_{1}, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_{n}\right) \in S\right\}
$$

- Again, Simple Recursion!
$-(S \cup T)_{[i: v]} \quad=S_{[i: v]} \cup T_{[i: V]}$
$-\left(S^{t 1, u 1} * T^{t 2, v 2}\right)_{[i: v]}=S_{[i: v]} * T$ if $i \in t 1$

$$
=S^{*} T_{[i \mathrm{iv]}} \text { if } \mathrm{i} \in \mathrm{t} 2
$$

- Other operations are also easy as long as they interact well with \cup and *

Comparison

- H. Meuss, K. U. Schulz, and F. Bry, "Towards Aggregated Answers for Semistructured Data", ICDT 2001
- Limited Expressiveness < Regular
- G. Bagan, "MSO Queries on Tree Decomposable Structures Are Computable with Linear Delay", CSL 2006
- "Enumeration" only
- B. Courcelle, "Linear Delay Enumeration and Monadic SecondOrder Logic", to appear in Discrete Applied Mathematics, 2009
- "Enumeration" only
- His "AND-OR-DAG" is quite similar to SRED (say, "*-U-DAG"), but no clear set-theoretic meaning is assigned; hence it is not at all straightforward to derive other operations like selection

