Multi-Return
 Macro Tree Transducers

CIAA 2008, San Francisco

The Univ. of Tokyo Kazuhiro Inaba
the Univ. of tokyo Haruo Hosoya nicta, and unsw Sebastian Maneth

Tree to Tree Translations

- Applications
\square Compiler
\square Natural Language
Processing
\square XML Query/Translation
- XSLT, XQuery, XDuce, ...
$\square \ldots$

■ Models
\square Tree Transducer

- Top-down / bottom-up
- with/without lookahead ...
\square Attributed Tree Transducer
\square MSO Tree Translation
\square Pebble Tree Transducer
\square Macro Tree Transducer
$\square \ldots$
\square Multi-Return Macro Tree
Transducer

Models of Tree Translation

- Top-down Tree Transducer
[Rounds 70, Thatcher 70]
\square Finite-state translation defined by structural (mutual) recursion on the input tree

$$
\begin{array}{ll}
<q, \underline{\text { bin }}\left(x_{1}, x_{2}\right)> & \rightarrow \text { fit }\left(<q, x_{1}>,<p, x_{2}>\right) \\
<q, \text { leaf }> & \rightarrow \text { leaf } \\
<p, \text { bin }\left(x_{1}, x_{2}\right)> & \rightarrow \text { sid }\left(<q, x_{1}>,<p, x_{2}>\right) \\
<p, \text { leaf }> & \rightarrow \text { leaf }
\end{array}
$$

$$
\begin{array}{ll}
<q, \underline{\text { bin }\left(x_{1}, x_{2}\right)>} & \left.\rightarrow \text { fst }\left(<q, x_{1}>,<p, x_{2}\right\rangle\right) \\
<q, \text { leaf }> & \rightarrow \text { leaf } \\
<p, \text { bin }\left(x_{1}, x_{2}\right)> & \left.\rightarrow \text { snd }\left(<q, x_{1}>,<p, x_{2}\right\rangle\right) \\
<p, \text { leaf }> & \rightarrow \text { leaf }
\end{array}
$$

Models of Tree Translation

- Macro Tree Transducer (MTT)
[Engelfriet 80, Courcell\&Franchi-Zannettacci 82]
\square Tree Transducer + Context parameters
\square Strictly more expressive than tree transducers

$$
\begin{array}{ll}
<q, \underline{\operatorname{bin}}\left(x_{1}, x_{2}\right)> & \rightarrow \underline{b i n}\left(<p, x_{1}>(1 \text { eaf }),<p, x_{2}>(\text { leaf })\right) \\
<p, \underline{\operatorname{bin}}\left(x_{1}, x_{2}\right)>(y) & \rightarrow \underline{\operatorname{bin}\left(<p, x_{1}>(1(y)),<p, x_{2}>(\underline{2}(y))\right)} \\
<p, \underline{\text { leaf }}>(y) & \rightarrow y
\end{array}
$$

$$
\begin{aligned}
& <q, \underline{\operatorname{bin}}\left(x_{1}, x_{2}\right)>\rightarrow \underline{\operatorname{bin}}\left(<p, x_{1}>(7 \text { eaf }),<p, x_{2}>(1 e a f)\right) \\
& <p, \operatorname{bin}\left(x_{1}, x_{2}\right)>\left(y_{1}\right) \\
& \underline{\operatorname{bin}}\left(<p, x_{1}>\left(\underline{1}\left(y_{1}\right)\right),<p, x_{2}>\left(\underline{2}\left(y_{1}\right)\right)\right) \\
& <p, \underline{\text { leaf }}>\left(y_{1}\right) \quad \rightarrow y_{1}
\end{aligned}
$$

Today's Topic

- Multi-Return Macro Tree Transducer
[Inaba, Hosoya, and Maneth 08]
\square Macro Tree Transducer + Multiple return trees

$<q, \underline{\operatorname{bin}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)>\left(\mathrm{y}_{1}\right) \rightarrow$	$\begin{aligned} & \text { 1et }\left(z_{1}, z_{2}\right)=<q, x_{1}>\left(\underline{1}\left(y_{1}\right)\right) \text { in } \\ & \text { 1et }\left(z_{3}, z_{4}\right)=\left\langle p, x_{2}\right\rangle\left(\underline{2}\left(y_{1}\right)\right) \text { in } \\ & \text { (bin } \left.\left(z_{1}, z_{3}\right), \text { fst }\left(z_{2}, z_{4}\right)\right) \end{aligned}$
$<q, \underline{\text { leaf }}>\left(\mathrm{y}_{1}\right) \quad \rightarrow$	(leaf, y_{1})
$<\mathrm{p}, \underline{\operatorname{bin}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)>\left(\mathrm{y}_{1}\right) \rightarrow$	1et $\left(z_{1}, z_{2}\right)=\left\langle q, x_{1}\right\rangle\left(\underline{1}\left(y_{1}\right)\right)$ in
	let $\left(z_{3}, z_{4}\right)=\left\langle p, x_{2}\right\rangle\left(z_{2}\left(y_{1}\right)\right)$ in (bin($\left.z_{1}, z_{3}\right)$, snd $\left.\left(z_{2}, z_{4}\right)\right)$
$<\mathrm{p}, \mathrm{leaf}>\left(\mathrm{y}_{1}\right) \quad \rightarrow$	(leaf, y_{1})

Outline of the Talk

- Overview
- Definitions of MTTs and mr-MTTs
- Properties of mr-MTTs
\square Expressiveness
\square Closure under DtT composition
- Characterization of mr-MTTs

Definition of Macro Tree Transducers (MTTs)

- A MTT is a tuple $M=\left(Q, \Sigma, \Delta, q_{0}, R\right)$ where
$\square \mathrm{Q}$: Ranked set of states (rank = \# of parameters)
$\square \Sigma$: Ranked set of input alphabet
$\square \Delta$: Ranked set of output alphabet
$\square \mathrm{q}_{0}$: Initial state of rank-0
$\square \mathrm{R}$: Set of rules of the following form:
$\left\langle q, \underline{\sigma}\left(x_{1}, \ldots, x_{k}\right)\right\rangle\left(y_{1}, \ldots, y_{m}\right) \rightarrow$ RHS
RHS ::= $\underline{\delta}($ RHS, ..., RHS) $<q^{\prime}, x_{i}>($ RHS,\ldots, , RHS $)$
y_{i}

Definition of MTTs

- An MTT is
\square Deterministic if for every pair of $q \in Q, \underline{\sigma} \in \Sigma$, there exists at most one rule of the form $<q, \underline{(}(\ldots)>(\ldots) \rightarrow \ldots$
\square Nondeterministic otherwise
\square Total if there's at least one rule of the form $<q, \underline{(}(\ldots)>(\ldots) \rightarrow \ldots$ for each of them
\square Linear if in every right-hand side, each input variable x_{i} occurs at most once

Translation realized by MTTs

- The translation realized by M is

$$
\mathrm{T}_{\mathrm{M}}=\left\{(\mathrm{s}, \mathrm{t}) \in \mathrm{T}_{\Sigma} \times \mathrm{T}_{\Delta} \mid<\mathrm{q}_{0}, \mathrm{~s}>\Rightarrow^{*} \mathrm{t}\right\}
$$

where \Rightarrow is the rewriting relation

- By interpreting R as the set of rewrite rules
- We consider only the Call-by-Value (Inside-Out) rewriting order in this work

Inside-Out (IO) Evaluation

- Example

$$
\begin{aligned}
& \left\langle q_{0}, \underline{a}(x)\right\rangle \rightarrow\left\langle q_{1}, x\right\rangle\left(\left\langle q_{2}, x\right\rangle\right) \\
& <q_{1}, \underline{e}>(y) \rightarrow \underline{b}(y, y) \\
& \left\langle q_{2}, \underline{e}\right\rangle \rightarrow \underline{C} \\
& \left\langle\mathrm{q}_{2}, \underline{\mathrm{e}}\right\rangle \quad \rightarrow \underline{d}
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle q_{0}, \underline{a}(\underline{e})>\Rightarrow\left\langle q_{1}, \underline{e}\right\rangle\left(<q_{2}, \underline{e}\right\rangle\right)\left.\Rightarrow<q_{1}, \underline{e}\right\rangle(\underline{c}) \\
&\left.\Rightarrow<q_{1}, \underline{e}\right\rangle(\underline{d})(\underline{c}, \underline{c}) \\
& \Rightarrow \underline{b}(\underline{d}, \underline{d})
\end{aligned}
$$

Why Nondeterminism and Why IO?

- IO-Nondeterminism in XML translation languages
\square In pattern matching (XDuce)
- match(e) with pat1 -> e1 | pat2 -> e2
\square If e matches both pat1 and pat2, then it nondeterminisitically chooses e1 or e2
\square Approximation of Turing-complete languages (XSLT, ...)
- if (complicated-condition) then e1 e1se e2
\square (complicated-condition) may not be able to be modeled by MTTs

Multi-Return Macro Tree Transducer (mr-MTT)

- An mr-MTT is a tuple $M=\left(Q, \Sigma, \Delta, q_{0}, R\right)$ where
$\square \mathrm{Q}$: Doubly ranked set of states (\#params, \#retvals)
$\square \Sigma$: Ranked set of input alphabet
$\square \Delta$: Ranked set of output alphabet
$\square \mathrm{q}_{\mathrm{o}}$: Initial state of rank $(0,1)$
$\square R$: Set of rules of the following form:
$<q, \underline{\sigma}\left(x_{1}, \ldots, x_{k}\right)>\left(y_{1}, \ldots, y_{m}\right) \rightarrow$ RHS
RHS : := LET* (TC, ..., TC)
LET : := let $\left(z_{1}, \ldots, z_{n}\right)=\left\langle q, x_{i}>(T C, \ldots, T C)\right.$ in
TC : := $\underline{\delta}(T C, \ldots, T C)\left|\mathbf{y}_{i}\right| \mathbf{z}_{\mathbf{i}}$

MTT vs mr-MTT \fallingdotseq Tree vs DAG

■ MTT

- mr-MTT

$$
\begin{aligned}
& <q, \underline{a}(x)>(y) \vec{b}),<q, x>(\underline{d}(y))) \\
& \underline{b}(<q, x>(\underline{c}(y)),<q,
\end{aligned}
$$

$$
<q, \underline{a}(x)>(y) \rightarrow
$$

$$
\text { 1et }\left(z_{1}, z_{2}\right)=\langle q, x\rangle(c(y)) \text { in }
$$

$$
\left(\underline{d}\left(z_{1}\right), z_{2}\right)
$$

$\stackrel{C}{1}$
y

Notations

■ T: the class of translation realized by top-down TTs
■ MT : the class of translations realized by MTTs
■ MM: the class of translations realized by mr-MTTs
■ $d-\mathrm{MM}($ for $d \in \mathrm{~N})$: the class of translations realizable by mr-MTTs whose return-tuples are at most length d

- Prefix D stands for "deterministic", t for "total", and L for "linear". E.g.,
\square DMT : the class of translations realized by deterministic MTTs
\square LDtT : the class of translations realized by linear deterministic total TTs

Good Properties of mr-MTTs

Expressiveness

- Question:

Does the 'multi-return' feature really adds any power to MTTs?

- Answer:

Yes, it does! (for nondetermistic MTTs)

Expressiveness of Det. Mr-MTT

■ DMT = DMM (Corollary 5)

- Intuition: State Splitting a state q returning n-tuple of trees \fallingdotseq
n states $q_{1} \ldots q_{n}$ where q_{i} returns the i-th component of the return value of q.

Expressiveness of Nondet. 1-MM

- MT ¢ 1-MM (Proposition 12)
- Intuition: copying by 'let' variables adds some power

$$
\begin{aligned}
&<q_{0}, \underline{b}\left(x_{1}, x_{2}\right)> \\
& 1 e t z=<q, x_{1}>(\underline{a}, \underline{a}) \text { in } \\
&<q, x_{2}>(z, z)
\end{aligned}
$$

$$
\begin{aligned}
<q_{0}, \underline{b} & \left(x_{1}, x_{2}\right)>\rightarrow \\
& <q, x_{2}>\left(<q, x_{1}>(\underline{a}, \underline{a}),<q, x_{1}>(\underline{a}, \underline{a})\right)
\end{aligned}
$$

Expressiveness of 2-MM

- 1-MM ᄃ 2-MM (Theorem 13)

\square Witnessed by the 'twist' translation in the paper

Expressiveness of d-MM

- Conjecture
$\square d-M M \subsetneq(d+1)-M M \quad$ for every $d \geqq 1$

Closure under composition

- MTTs are very poor in composition:
\square LHOM ; MT \ddagger MT
\square MT ; DtT \ddagger MT

■ For mr-MTTs:
$\square D T$; MM $\subseteq M M$
$\square \mathrm{MM} ; \mathrm{DtT} \subseteq \mathrm{MM}$
(Theorem 11)

Proof Sketch

- DT ; MM \subseteq MM
\square Proof. Product construction
P : the set of states of the DT
Q : the set of states of the Ihs MM
$\rightarrow \mathrm{MM}$ with set of states $P \times Q$ can simulate the composition (rules for the state (p, q) are obtained by 'applying' q to rules for p, in which we need variable-bindings by 'let').
■ MM ; DtT \subseteq MM
\square Proof. (A variant of) product construction
Q : states of Ihs MM, P: states of DtT \rightarrow MM with set of states Q, where ranks of each $\mathrm{q} \in \mathrm{Q}$ is multiplied by $|\mathrm{P}|$ (a state with m params \& d retvals becomes $m|P|$ params \& $d|P|$ retvals).

Characterization of mr-MTTs

- Question: How precisely powerful than MTTs?
- Answer:

MM \subseteq LHOM ; MT ; LDtT
\square proven through two lemmas

- MM $\subseteq 1$-MM ; LDtT
- 1-MM $\subseteq \mathrm{LHOM}$; MT

Characterization of mr-MTTs (Simulating multiple return values)

- MM $\subseteq 1$-MM ; LDtT (Lemma 2)
\square Intuition: the $1-\mathrm{MM}$ outputs symbolic representations of tupling and projection operations, and the LDtT carries them out

$$
\begin{aligned}
& <q, \underline{b}(x)>\rightarrow \\
& 1 e t \quad\left(z_{1}, z_{2}\right)=<q, x>\text { in } \\
& \left(\underline{a}\left(z_{1}\right), \underline{b}\left(z_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
&<q, \quad \underline{b}(x)> \\
& 7 \text { et } z==q, x>\text { in } \\
&\left.\underline{I}\left(\underline{\left(\underline { 1 } \left(1^{\text {st }}\right.\right.}(z)\right), \underline{b}\left(2^{\text {nd }}(z)\right)\right)
\end{aligned}
$$

Characterization of mr-MTTs (Simulating 'let'-variable bindings)

- 1-MM \subseteq LHOM ; MT (Lemma 3)
\square Intuition: MTTs cannot bind and copy trees by 'let'-variables, but they can by context parameters

Conclusion

■ Multi-Return Macro Tree Transducers
= Macro tree transducers with multiple return-values

- Expressiveness
\square DMT = DMM
\square MT ᄃ 1-MM ᄃ 2-MM
- Closure under Composition
$\square \mathrm{DT}$; MM \subseteq MM
$\square \mathrm{MM}$; DtT $\subseteq \mathrm{MM}$
- Characterization
$\square \mathrm{MM}=\mathrm{LHOM}$; MT ; LDtT

