
Multi-Return

Macro Tree Transducers

The Univ. of Tokyo Kazuhiro Inaba

The Univ. of Tokyo  Haruo Hosoya

NICTA, and UNSW Sebastian Maneth

CIAA 2008, San Francisco



Tree to Tree Translations

 Applications
 Compiler

 Natural Language 
Processing

 XML Query/Translation
 XSLT, XQuery, XDuce, …

…

 Models
 Tree Transducer

 Top-down / bottom-up

 with/without lookahead …

 Attributed Tree Transducer

MSO Tree Translation

 Pebble Tree Transducer

Macro Tree Transducer

…

Multi-Return Macro Tree 
Transducer



Models of Tree Translation

 Top-down Tree Transducer

[Rounds 70, Thatcher 70]

Finite-state translation defined by structural 

(mutual) recursion on the input tree

<q, bin(x1,x2)> → fst( <q,x1>, <p,x2> )
<q, leaf> → leaf

<p, bin(x1,x2)> → snd( <q,x1>, <p,x2> )
<p, leaf> → leaf



<q, bin(x1,x2)> → fst( <q,x1>, <p,x2> )
<q, leaf> → leaf

<p, bin(x1,x2)> → snd( <q,x1>, <p,x2> )
<p, leaf> → leaf

bin

bin bin

bin leaf

leaf leaf

leaf leaf

fst

fst snd

fst leaf

leaf leaf

leaf leaf



Models of Tree Translation

 Macro Tree Transducer (MTT)

[Engelfriet 80, Courcell&Franchi-Zannettacci 82]

Tree Transducer + Context parameters

Strictly more expressive than tree transducers

<q, bin(x1,x2)> → bin( <p,x1>(leaf),<p,x2>(leaf) )

<p, bin(x1,x2)>(y) → bin( <p,x1>(1(y)),<p,x2>(2(y)) )
<p, leaf>(y) → y



bin

bin bin

bin leaf

leaf leaf

leaf leaf

bin

bin bin

bin 2

1 2

1 2

1

1

leaf

1

1

leaf

1

leaf

2

leaf

2

leaf

<q, bin(x1,x2)> → bin( <p,x1>(leaf),<p,x2>(leaf) )

<p, bin(x1,x2)>(y1) → 
bin( <p,x1>(1(y1)),<p,x2>(2(y1)) )
<p, leaf>(y1) → y1



Today‟s Topic

 Multi-Return Macro Tree Transducer

[Inaba, Hosoya, and Maneth 08]

Macro Tree Transducer + Multiple return trees

<q, bin(x1,x2)>(y1) → let (z1,z2) = <q,x1>(1(y1)) in
let (z3,z4) = <p,x2>(2(y1)) in
(bin(z1,z3), fst(z2,z4))

<q, leaf>(y1) → (leaf, y1)

<p, bin(x1,x2)>(y1) → let (z1,z2) = <q,x1>(1(y1)) in
let (z3,z4) = <p,x2>(2(y1)) in
(bin(z1,z3), snd(z2,z4))

<p, leaf>(y1) → (leaf, y1)



Outline of the Talk

 Overview

 Definitions of MTTs and mr-MTTs

 Properties of mr-MTTs

Expressiveness

Closure under DtT composition

 Characterization of mr-MTTs



Definition of

Macro Tree Transducers (MTTs)

 A MTT is a tuple M = (Q, Σ, Δ, q0, R) where

Q  : Ranked set of states (rank = # of parameters)

 Σ : Ranked set of input alphabet

 Δ : Ranked set of output alphabet

 q0 : Initial state of rank-0

 R : Set of rules of the following form:

<q, σ(x1,…,xk)>(y1, …, ym) → RHS

RHS ::= δ( RHS, …, RHS )
| <q’, xi>( RHS, …, RHS )
| yi



Definition of MTTs

 An MTT is

Deterministic if for every pair of q∈Q, σ∈Σ, 

there exists at most one rule of the form 

<q,σ(…)>(…) → …

Nondeterministic otherwise

Total if there‟s at least one rule of the form

<q,σ(…)>(…) → … for each of them

Linear if in every right-hand side, each input 

variable xi occurs at most once



Translation realized by MTTs

 The translation realized by M is

τM = { (s,t) ∈ TΣ×TΔ |  <q0,s> ⇒* t  }

where ⇒ is the rewriting relation
 By interpreting R as the set of rewrite rules

 We consider only the Call-by-Value (Inside-Out) 

rewriting order in this work



Inside-Out (IO) Evaluation

 Example

<q0, a(x)> → <q1,x>( <q2,x> )
<q1, e>(y) → b(y, y)
<q2, e>    → c
<q2, e>    → d

<q0, a(e)> ⇒ <q1,e>( <q2,e> ) ⇒ <q1,e>( c ) ⇒ b(c,c)

⇒ <q1,e>( d ) ⇒ b(d,d)

⇒ b( <q2,e>, <q2,e> )



Why Nondeterminism and Why IO?

 IO-Nondeterminism in XML translation 

languages

 In pattern matching (XDuce)

 match(e) with pat1 -> e1 | pat2 -> e2

 If e matches both pat1 and pat2, then it nondeterminisitically 

chooses e1 or e2

 Approximation of Turing-complete languages

(XSLT, …)

 if (complicated-condition) then e1 else e2

 (complicated-condition) may not be able to be modeled by 

MTTs



Multi-Return Macro Tree Transducer

(mr-MTT)

 An mr-MTT is a tuple M = (Q, Σ, Δ, q0, R) where

Q : Doubly ranked set of states (#params, #retvals)

 Σ : Ranked set of input alphabet

 Δ : Ranked set of output alphabet

 q0 : Initial state of rank (0, 1)

 R : Set of rules of the following form:

<q, σ(x1,…,xk)>(y1, …, ym) → RHS

RHS ::= LET* (TC, …, TC)
LET ::= let (z1,…,zn) = <q,xi>(TC, …, TC) in
TC ::= δ(TC, …, TC) | yi | zi



MTT vs mr-MTT ≒ Tree vs DAG

 MTT  mr-MTT

<q, a(x)>(y) →
b(<q,x>(c(y)), <q,x>(d(y)))

<q, a(x)>(y) →
let (z1,z2) = <q,x>(c(y)) in

(d(z1), z2)

b

<q,x><q,x>

d

y

c

y

d

<q,x>

c

y



Notations

 T : the class of translation realized by top-down TTs

 MT : the class of translations realized by MTTs

 MM : the class of translations realized by mr-MTTs

 d-MM (for d ∈ N) : the class of translations realizable by

mr-MTTs whose return-tuples are at most length d

 Prefix D stands for “deterministic”, t for “total”, and L for “linear”. E.g.,

 DMT : the class of translations realized by deterministic MTTs

 LDtT : the class of translations realized by linear deterministic total TTs



Good Properties of mr-MTTs



Expressiveness

Question:

Does the „multi-return‟ feature really 

adds any power to MTTs?

 Answer:

Yes, it does!  (for nondetermistic MTTs)



Expressiveness of Det. Mr-MTT

 DMT = DMM      (Corollary 5)

 Intuition: State Splitting

a state q returning n-tuple of trees

≒
n states q1 … qn where qi returns the

i-th component of the return value of q.



Expressiveness of Nondet. 1-MM

 MT ⊊ 1-MM       (Proposition 12)

 Intuition: copying by „let‟ variables adds 
some power

<q0,b(x1,x2)> →
let z = <q,x1>(a,a) in

<q,x2>( z, z )

<q0,b(x1,x2)> →

<q,x2>( <q,x1>(a,a), <q,x1>(a,a) )



Expressiveness of 2-MM

 1-MM ⊊ 2-MM        (Theorem 13)

Witnessed by the „twist‟ translation in the paper

r

s

s

z

r

a

a

e

A

A

E

r

a

b

e

B

A

E

r

b

a

e

A

B

E

r

b

b

e

B

B

E



Expressiveness of d-MM

 Conjecture

d-MM ⊊ (d+1)-MM      for every d ≧ 1



Closure under composition

 MTTs are very poor in composition:

LHOM ; MT ⊈ MT

MT ; DtT ⊈ MT

 For mr-MTTs:

DT  ; MM ⊆ MM

MM ; DtT ⊆ MM           (Theorem 11) 



Proof Sketch

 DT ; MM ⊆ MM
 Proof.  Product construction

P : the set of states of the DT
Q : the set of states of the lhs MM

→ MM with set of states P×Q can simulate the
composition (rules for the state (p,q) are obtained
by „applying‟ q to rules for p, in which we need
variable-bindings by „let‟).

 MM ; DtT ⊆ MM
 Proof. (A variant of) product construction

Q : states of lhs MM,    P : states of DtT
→ MM with set of states Q, where ranks of each
q∈Q is multiplied by |P| (a state with m params
& d retvals becomes m|P| params & d|P| retvals).



Characterization of mr-MTTs

 Question:
How precisely powerful than MTTs?

 Answer:
MM ⊆ LHOM ; MT ; LDtT

 proven through two lemmas
 MM ⊆ 1-MM ; LDtT

 1-MM ⊆ LHOM ; MT



Characterization of mr-MTTs

(Simulating multiple return values)

 MM ⊆ 1-MM ; LDtT  (Lemma 2)

 Intuition: the 1-MM outputs symbolic 

representations of tupling and projection 

operations, and the LDtT carries them out

<q, b(x)> →
let (z1,z2) = <q,x> in

(a(z1), b(z2))

<q, b(x)> →
let z = <q,x> in

τ(a(1st(z)), b(2nd(z)))



Characterization of mr-MTTs

(Simulating „let‟-variable bindings)

 1-MM ⊆ LHOM ; MT   (Lemma 3)

 Intuition: MTTs cannot bind and copy trees 

by ‟let‟-variables, but they can by context 

parameters

bin

leaf leaf

bin

l l

b

b

leaf

l

leaf

l

LHOM

Evaluate the 1st 

„let … in‟

Evaluate the 

2nd „let … in‟

Generate Output 

Tree

MT



Conclusion

 Multi-Return Macro Tree Transducers
= Macro tree transducers with multiple return-values

 Expressiveness
 DMT = DMM

MT ⊊ 1-MM ⊊ 2-MM

 Closure under Composition
 DT ; MM ⊆ MM

MM ; DtT ⊆ MM

 Characterization
MM = LHOM ; MT ; LDtT


